Ядерная энергетика презентация по физике. Презентация "Ядерная энергетика" по физике – проект, доклад. Работа, проделанная на подготовительном этапе

Слайд 2

1. Мировой опыт развития атомной энергетики

Сегодня 1,7 млрд. человек не имеют доступа к электроэнергии

Слайд 3

Мировые проблемы

Рост энергопотребления Быстрое исчерпание энергоносителей Атомная энергетика – один из основных мировых источников энергообеспечения

Слайд 4

Развитие мирной ядерной энергетики началось в 1954 г. с введения в эксплуатацию первой атомной электростанции в г. Обнинске (СССР) Авария на Чернобыльской АЭС замедлила темпы развития ядерной энергетики – некоторые страны объявили мораторий на строительство новых АЭС

Слайд 5

В 2000 – 2005 гг. в строй было введено 30 новых реакторов

Сегодня в мире насчитывается около 440 ядерных реакторов Они расположены более чем в 30 странах Основные мощности сосредоточены в Западной Европе и США

Слайд 6

Слайд 7

Страны, удовлетворяющие за счет АЭС большую часть своих потребностей в электроэнергии

Слайд 8

Вопросы экологии:

Большая часть выбросов в атмосферу происходит при сжигании органического топлива В результате эксплуатации угольных электростанций в атмосферу ежегодно попадает около 24 млрд.т углекислого газа АЭС не выбрасывают в атмосферу загрязняющих веществ

Слайд 9

Показатели выброса в атмосферу связанных с энергетикой парниковых газов

Слайд 10

Многоуровневая система безопасности современных реакторов:

Внутренняя металлическая оболочка защищает людей и окружающую среду от радиации, Наружная – предохраняет от воздействия извне (землетрясения, урагана, наводнения и т.д.),

Слайд 11

Пассивные системы безопасности:

Топливная таблетка (задерживает 98 % радиоактивных продуктов деления, Герметичная оболочка тепловыделяющего элемента, Прочный корпус реактора (толщина стенок – 25 см. и более) Герметичная защитная оболочка, предотвращающая выход радиоактивности в окружающую среду

Слайд 12

Роль защитной оболочки

28 марта 1979 г. – авария на американской АЭС Три-Майл-Айленд 26 апреля 1986 г. – авария на 4 блоке Чернобыльской АЭС Авария не носила глобального характера Стала экологической катастрофой

Слайд 13

2. Необходимость развития атомной энергетики и строительства АЭС в Беларуси

Острая нехватка собственных топливно-энергетических ресурсов Зависимость от единственного поставщика (России) Удорожание ресурсов Загрязнение окружающей среды.

Слайд 14

«Плюсы» строительства АЭС:

Удовлетворение около 25 % потребностей страны в электроэнергии Снижение ее себестоимости на 13 %

Слайд 15

15 января 2008 г.

На заседании Совета Безопасности Республики Беларусь принято решение о строительстве в Беларуси собственной атомной электростанции

Слайд 16

31 января 2008 г.

Президент Республики Беларусь подписал постановление Совета Безопасности № 1 «О развитии атомной энергетики в Республике Беларусь»

Слайд 17

3. Общественное мнение о строительстве АЭСДолжна ли Беларусь иметь и развивать ядерную энергетику?

Слайд 18

Почему нам нужна АЭС?

  • Слайд 19

    4. Работа, проделанная на подготовительном этапе

    Реализацию плана подготовительных работ обеспечивают Совет Министров и Национальная академия наук Организует и координирует деятельность по строительству АЭС Министерство энергетики Генеральный проектировщик – республиканское унитарное предприятие «БелНИПИЭнерго» Научное сопровождение работ – государственное научное учреждение «Объединенный институт энергетических и ядерных исследований – Сосны» национальной академии наук Беларуси Подготовка к строительству ведется во взаимодействии с Международным агентством ООН по атомной энергетике (МАГАТЭ)

    Слайд 20

    Выбор площадки для размещения АЭС

    Проводится обширный комплекс исследовательских и проектно-изыскательских работ Работы проведены во всех регионах республики (более чем на 50 площадках) По каждой из потенциальных площадок будет подготовлено независимое экспертное заключение Полный цикл исследований предполагается завершить к концу 2008 г. и предоставить материалы в МАГАТЭ (не менее 2 площадок) Ведется разработка законодательной базы для регламентации работы будущей АЭС Идет подготовка материалов для международного тендера на строительство АЭС

    Слайд 21

    5. Экономические и социальные эффекты развития атомной энергетики

    Снижение потребности государства в импортных энергоносителях на треть Снижение уровня использования природного газа Позволит уйти от однобокой зависимости от поставок российского газа (уран добывают Канада, ЮАР, США, Намибия, Австралия, Франция и др.) Развитие современных наукоемких технологий, повышение квалификации кадров Экономическое и социальное развитие региона размещения АЭС Приобретенный при строительстве опыт в будущем позволит участвовать в возведении объектов ядерной энергетики в Беларуси и за рубежом

    Посмотреть все слайды

    1 слайд

    Атомная энергетика МОУ гимназия №1 – город Галич Костромской области © Наньева Юлия Владимировна – учитель физики

    2 слайд

    3 слайд

    Люди издавна задумывались над тем, как заставить работать реки. Уже в древности – в Египте, Китае, Индии – водяные мельницы для помола зерна появились задолго до ветряных – в государстве Урарту (на территории нынешней Армении), но были известны ещё в XIII в. до н. э. Одними из первых электростанций были «Гидроэлектростанции». Строились эти электростанции на горных реках где довольно сильное течение. Строительство ГЭС позволило сделать судоходными многие реки, так как строение плотин поднимало уровень воды и затапливало речные пороги, которые препятствовали свободному прохождению речных судов. Гидроэлектростанции

    4 слайд

    Для создания напора воды необходима плотина. Однако плотины ГЭС ухудшают условия обитания водяной фауны. Запруженные реки, замедлив течение, зацветают, уходят под воду обширные участки пахотной земли. Населённые пункты (в случае постройки плотины) будут затоплены, ущерб, который будет нанесен, несравним с выгодой строительства ГЭС. Кроме этого необходима система шлюзов для пропускания судов и рыбопропускные или водозаборные сооружения для орошения полей и водоснабжения. И хотя ГЭС имеют немалые преимущества перед тепловыми и атомными электростанциями, так как не нуждаются в топливе и потому вырабатывают более дешевую электроэнергию Выводы:

    5 слайд

    Теплоэлектростанции На тепловых электростанциях источником энергии служит топливо: уголь газ нефть, мазут, горючие сланцы. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с выбросами горячего пара. С экологической точки зрения ТЭС является наиболее загрязняющей. Деятельность тепловых электростанций неотъемлемо связана со сжиганием огромного количества кислорода и образованием углекислого газа и окислов других химических элементов. В соединении с молекулами воды они образуют кислоты, которые в виде кислотных дождей падают нам на головы. Не будем забывать и о "парниковом эффекте" - его влияние на изменение климата наблюдается уже сейчас!

    6 слайд

    Атомная электростанция Запасы источников энергии ограничены. По разным подсчетам, залежей угля в России при существующем уровне его добычи осталось на 400-500 лет, а газа и того меньше - на 30-60. И здесь на первое место выходит ядерная энергетика. Всё большую роль в энергетике начинают играть атомные электростанции. В настоящее время АЭС нашей страны дают около 15,7% электроэнергии. Атомная электростанция - основа энергетики использующей ядерную энергию для целей электрификации и теплофикации.

    7 слайд

    Ядерная энергетика основана на делении тяжёлых ядер нейтронами с образованием из каждого двух ядер – осколков и нескольких нейтронов. При этом освобождается колоссальная энергия, которая в последствии расходуется на нагревание пара. Работа любого завода или машины, вообще любая деятельность человека связана с возможностью возникновения риска для здоровья человека и окружающей среды. Как правило, люди с большей опаской относятся к новым технологиям, особенно если они слышали о возможных авариях. И атомные станции - не исключение. Выводы:

    8 слайд

    Уже очень давно, видя, какие разрушения могут приносить бури и ураганы, человек задумался над тем, нельзя ли использовать энергию ветра. Энергия ветра очень велика. Эту энергию можно получать, не загрязняя окружающую среду. Но у ветра есть два существенных недостатка: энергия сильно рассеяна в пространстве и ветер не предсказуем – часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Для получения энергии ветра применяют самые разные конструкции: от многолопастной «ромашки» и винтов вроде самолётных пропеллеров с тремя, двумя и даже одной лопастью до вертикальных роторов. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Ветряные электростанции

    9 слайд

    Строительство, содержание и ремонт ветроустановок, круглосуточно работающих под открытым небом в любую погоду, стоят недёшево. Ветроэлектростанции такой же мощности как ГЭС, ТЭЦ или АЭС, по сравнению с ними должна занимать очень большую площадь, чтобы как-то компенсировать изменчивость ветра. Ветряки ставят так, чтобы они не загораживали друг друга. Поэтому строят огромные «ветряные фермы», в которых ветродвигатели стоят рядами на обширном пространстве и работают на единую сеть. В безветренную погоду такая электростанция может использовать воду набранную в ночное время. Размещение ветряков и водохранилища требуют больших площадей, которые используются под пахоту. К тому же ветроэлектростанции не безвредны: они мешают полётам птиц и насекомых, шумят, отражают радиоволны, вращающимися лопастями, создавая помехи приёму телепередач в близлежащих населённых пунктах. Выводы:

    10 слайд

    В тепловом балансе Земли солнечное излучение играет решающую роль. Мощность излучения, падающего на Землю, определяет предельную мощность, которую можно выработать на Земле без существенного нарушения теплового баланса. Интенсивность солнечного излучения и продолжительность солнечного сияния в южных районах страны дают возможность с помощью солнечных батарей получить достаточно высокую температуру рабочего тела для его использования в тепловых установках. Солнечные электростанции

    11 слайд

    Большая рассеянность энергии и нестабильность её поступления – недостатки солнечной энергетики. Эти недостатки частично компенсируется использованием аккумулирующих устройств, но всё же атмосфера Земли мешает получению и использованию «чистой» солнечной энергии. Для увеличения мощности СЭС необходимо установка большого числа зеркал и солнечных батарей - гелиостатов, которые должны оборудоваться с системой автоматического слежения за положением солнца. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, которое ведёт к перегреванию земной атмосферы. Выводы:

    12 слайд

    Геотермальная энергетика Около 4% всех запасов воды на нашей планете сосредоточено под землёй – в толщах горных пород. Воды, температура которых превышает 20 градусов по Цельсию, называют термальными. Нагреваются подземные воды в результате радиоактивных процессов протекающих в недрах земли. Люди научились использовать глубинное тепло Земли в хозяйственных целях. В странах где термальные воды подходят близко к поверхности земли, сооружают геотермальные электростанции (геоТЭС). ГеоТЭС устроены относительно просто: здесь нет котельной, оборудования для подачи топлива, золоуловителей и многих других приспособлений, необходимых для тепловых электростанций. Поскольку топливо у таких электростанций бесплатное, то и себестоимость вырабатываемой электроэнергии низкая.

    13 слайд

    Ядерная энергетика Отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; Область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К началу 90-х гг. в 27 странах мира работало свыше 430 ядерных энергетических реакторов общей мощностью около 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций.

    14 слайд

    Развитие ядерной энергетики 1942 г. в США под руководством Энрико Ферми был построен первый ядерный реактор ФЕРМИ (Fermi) Энрико (1901-54), итальянский физик, один из создателей ядерной и нейтронной физики, основатель научных школ в Италии и США, иностранный член-корреспондент АН СССР (1929). В 1938 эмигрировал в США. Разработал квантовую статистику (статистика Ферми - Дирака; 1925), теорию бета-распада (1934). Открыл (с сотрудниками) искусственную радиоактивность, вызванную нейтронами, замедление нейтронов в веществе (1934). Построил первый ядерный реактор и первым осуществил в нем (2.12.1942) цепную ядерную реакцию. Нобелевская премия (1938).

    15 слайд

    1946 г. в Советском Союзе под руководством Игоря Васильевича Курчатова создан первый европейский реактор. Развитие ядерной энергетики КУРЧАТОВ Игорь Васильевич (1902/03-1960), российский физик, организатор и руководитель работ по атомной науке и технике в СССР, академик АН СССР (1943), трижды Герой Социалистического Труда (1949, 1951, 1954). Исследовал сегнетоэлектрики. Совместно с сотрудниками обнаружил ядерную изомерию. Под руководством Курчатова сооружен первый отечественный циклотрон (1939), открыто спонтанное деление ядер урана (1940), разработана противоминная защита кораблей, созданы первый в Европе ядерный реактор (1946), первая в СССР атомная бомба (1949), первые в мире термоядерная бомба (1953) и АЭС (1954). Основатель и первый директор Института атомной энергии (с 1943, с 1960 - имени Курчатова).

    16 слайд

    существенная модернизация современных ядерных реакторов усиление мер защиты населения и окружающей среды от вредного техногенного воздействия подготовка высококвалифицированных кадров для атомных электростанций разработка надежных хранилищ радиоактивных отходов и др. Главные принципы концепции безопасности атомных электростанций:

    17 слайд

    Проблемы ядерной энергетики Содействие распространению ядерного оружия; Радиоактивные отходы; Возможность аварии.

    18 слайд

    Озёрск ОЗЕРСК, город в Челябинской области Датой основания Озерска считается 9 ноября 1945, когда было принято решение начать строительство между городами Касли и Кыштым завода по производству оружейного плутония. Новое предприятие получило условное название База-10, позднее оно стало известно как комбинат «Маяк». Директором Базы-10 был назначен Б.Г. Музруков, главным инженером - Е.П. Славский. Курировали строительство завода Б.Л. Ванников и А.П. Завенягин. Научное руководство атомным проектом осуществлял И.В. Курчатов. В связи со строительством завода на берегу Иртяша был заложен рабочий поселок с условным названием Челябинск-40. 19 июня 1948 года первый в СССР промышленный атомный реактор был построен. В 1949 году База-10 начала поставки оружейного плутония. В 1950-1952 годах были введены в действие пять новых реакторов.

    19 слайд

    В 1957 году на заводе «Маяк» произошел взрыв емкости с радиоактивными отходами, в результате образовался Восточно-Уральский радиоактивный след шириной 5-10 км и длиной 300 км с населением 270 тысяч человек. Производство на объединении «Маяк»: оружейного плутония радиоактивные изотопы Применение: в медицине (лучевая терапия), в промышленности (дефектоскопия и слежение за ходом технологических процессов), в космических исследованиях (для изготовления атомных источников тепловой и электрической энергии), в радиационных технологиях (меченые атомы). Челябинск-40

    Слайд 1

    Осадчая Е.В.
    1
    Презентация к уроку "Атомная энергетика" для учащихся 9 класса

    Слайд 2

    2
    Почему возникла необходимость использования ядерного топлива?
    Растущий рост потребления энергии в мире. Природные запасы органического топлива - ограничены. Мировая химическая промышленность увеличивает объём потребления угля и нефти для технологических целей, поэтому несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к увеличению его стоимости.

    Слайд 3

    3
    Почему необходимо развивать атомную энергетику?
    Мировые энергетические ресурсы ядерного горючего превышают энергоресурсы природных запасов органического топлива. Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Проблему «энергетического голода» не решает использование возобновляемых источников энергии. Очевидна необходимость развития атомной энергетики, которая занимает заметное место в энергетическом балансе ряда промышленных стран мира.

    Слайд 4

    4
    Атомная энергетика

    Слайд 5

    5
    АТОМНАЯ ЭНЕРГЕТИКА
    ПРИНЦИП

    Слайд 6

    6
    Эрнст Резерфорд
    В 1937 году лорд Эрнст Резерфорд утверждал, что получение ядерной энергии в более или менее значительных количествах, достаточных для практического использования, никогда не будет возможным.

    Слайд 7

    7
    Энрико Ферми
    В 1942 г. под руководством Энрико Ферми в США был построен первый ядерный реактор.

    Слайд 8

    8
    16 июля 1945 года в 5 часов 30 минут утра по местному времени в пустыне Аламогордо (штат Нью-Мехико, США) была испытана первая атомная бомба.
    Но...

    Слайд 9

    9
    В 1946 г. первый европейский реактор был создан в СССР под руководством И.В.Курчатова. Под его руководством был разработан проект первой в мире АЭС.
    Курчатов Игорь Васильевич

    Слайд 10

    10
    В январе 1954 года со стапелей доков ВМФ США в Гротоне (штат Коннектикут) сошла подводная лодка нового типа - атомная, которой дали имя ее знаменитой предшественницы - Nautilus.
    Первая советская атомная подводная лодка К-3 " Ленинский комсомол " 1958 г.
    Первая подводная лодка

    Слайд 11

    11
    27 июня 1954 году в Обнинске была пущена первая в мире атомная электростанция мощностью 5 МВт.
    Первая АЭС

    Слайд 12

    12
    Вслед за первой АЭС в 50-ые годы сооружаются АЭС: Calder Hall-1 (1956 г., Великобритания); Shippingport (1957 г., США); Сибирская (1958 г., СССР); G-2, Маркуль (1959 г., Франция). После накопления опыта эксплуатации первенцев атомной энергетики в СССР, США, странах Западной Европы были разработаны программы сооружения головных образцов будущих серийных энергоблоков.

    Слайд 13

    17 сентября 1959 года в свой первый рейс вышел первый в мире атомный ледокол «Ленин», построенный на ленинградском Адмиралтейском заводе и приписанный к Мурманскому пароходству.
    Первый атомный ледокол

    Слайд 14

    Слайд 16

    16
    ЯДЕРНАЯ ЭНЕРГЕТИКА
    Экономия органического топлива. Малые массы горючего. Получение большой мощности с одного реактора. Невысокая себестоимость энергии. Отсутствие потребности в атмосферном воздухе.
    Экологическая чистота (при правильной их эксплуатации).

    Слайд 17

    17
    ЯДЕРНАЯ ЭНЕРГЕТИКА
    Высокая квалификация и ответственность кадров. Доступность для терроризма и шантажа с катастрофическими последствиями.
    недостатки
    Безопасность реактора. Безопасность окружающих АЭС территорий. Особенности ремонта. Сложность ликвидации ядерного энергетического объекта. Необходимость захоронения радиоактивных отходов.

    Слайд 18

    18
    ЯДЕРНАЯ ЭНЕРГЕТИКА

    Слайд 19

    19
    Факты: В структуре топливно-энергетического баланса (ТЭБ) и электроэнергетики мира преобладают, соответственно, нефть (40%) и уголь (38%). В мировом ТЭБ газ (22%) занимает третье место после угля (25%), а в структуре электроэнергетики газ (16%) находится на предпоследнем месте, опережая только нефть (9%) и уступая всем остальным видам энергоносителей, включая атомную энергетику (17%).

    Слайд 20

    20
    В России сложилась уникальная ситуация: газ доминирует как в ТЭБ (49%), так и в электроэнергетике (38%). Атомная энергия России занимает сравнительно скромное место (15%) в производстве электроэнергии по сравнению со среднемировыми показателями (17%).

    Слайд 21

    21
    Использование мирного атома остается одним из приоритетных направлений развития российской энергетики. Несмотря на свое сравнительно скромное место в общем производстве электроэнергии по стране, атомная промышленность имеет огромное количество практических применений (создание вооружения с ядерными компонентами, экспорт технологий, освоение космоса). Количество нарушений в работе наших АЭС постоянно снижается: по количеству остановок энергоблоков Россия сегодня уступает только Японии и Германии.

    Слайд 22

    22
    В условиях глобального кризиса энергоносителей, когда цена на нефть уже превысила отметку в $100 за баррель, развитие таких перспективных и высокотехнологичных областей, как ядерная промышленность, позволит России удержать и усилить свое влияние в мире.
    07.02.2008


    ЯДЕРНАЯ энергетика (атомная энергетика) - отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в К нач. 90-х гг. в 27 странах мира работало св. 430 ядерных энергетических реакторов общей мощностью ок. 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций. Главные принципы этой концепции - существенная модернизация современных ядерных реакторов, усиление мер защиты населения и окружающей среды от вредного техногенного воздействия, подготовка высококвалифицированных кадров для атомных электростанций, разработка надежных хранилищ радиоактивных отходов и др.


    Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях и электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.







    Основное назначение электрических станций - снабжение электроэнергией промышленных предприятий, сельскохозяйственного производства, электрифицированного транспорта и населения.Неразрывность производства и потребления энергии предъявляет весьма высокие требования к надежности работы электрических станций, так как перебои в снабжении электроэнергией и теплом отражаются не только на экономических показателях самой станции, но и на показателях обслуживаемых ею промышленных предприятий и транспорта. В настоящее время атомные станции работают как конденсационные. Иногда их называют также атомными ГРЭС. Атомные станции, предназначенные для отпуска не только электроэнергии, но и тепла, называются атомными теплоэлектроцентралями (АТЭЦ). Пока разрабатываются лишь их проекты.


    А) Одноконтурные Б) Двухконтурные В) Неполностью двухконтурные Г) Трёхконтурные 1 - реактор; 2 - паровая турбина; 3 - электрический генератор; 4 - конденсатор; 5 - питательный насос; 6 - циркуляционный насос: 7 - парогенератор; 8 - компенсатор объема; 9 - барабан-сепаратор; 10 - промежуточный теплообменник; 11 - жидкометаллический насос


    Классификация атомных станций зависит от числа контуров на ней. Выделяют АЭС одноконтурные, двухконтурные, неполностью двухконтурные и трехконтурные. Если контуры теплоносителя и рабочего тела совпадают, то такую АЭС; называют одноконтурной. В реакторе происходит парообразование, пар направляется в турбину, где, расширяясь, производит работу, превращаемую в генераторе в электроэнергию. После конденсации всего пара в конденсаторе конденсат насосом подается снова в реактор. Таким образом, контур рабочего тела является одновременно контуром теплоносителя, а иногда и замедлителя, и оказывается замкнутым. Реактор может работать как с естественной, так и с принудительной циркуляцией теплоносителя по дополнительному внутреннему контуру реактора, на котором установлен соответствующий насос.




    ЯДЕРНОЕ оружие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения; обладает громадной разрушительной силой. По мощности зарядов и дальности действия ядерное оружие делится на тактическое, оперативно-тактическое и стратегическое. Применение ядерного оружия в войне гибельно для всего человечества. Атомная бомба Водородная бомба



    Первая атомная бомба была применена американской армией после второй мировой войне на территории Японии. Действие атомной бомбы Ядерным, или атомным, называется вид оружия, в котором взрыв происходит под действием энергии, выделяющейся при делении атомных ядер. Это самый опасный вид вооружения на нашей планете. При взрыве одной атомной бомбы в густонаселённом районе число человеческих жертв превысит несколько миллионов. Кроме действия ударной волны, образующейся при взрыве, основным воздействием её является радиоактивное заражение местности в районе взрыва, которое сохраняется в течение многих лет. В настоящее время официально ядерное оружие имеют: США, Россия, Великобритания (с 1952 года), Франция (с 1960 года), Китай (с 1964 года), Индия (с 1974 года), Пакистан (с 1998 года) и КНДР (с 2006 года). В ряде стран, например, в Израиле и Иране, имеются небольшие запасы ядерного оружия, но официально они пока не считаются ядерными державами.

    До 3032 млрд. кВт/ч в 2020 г., Атомная энергетика : за и против Преимущества атомных электростанций (АЭС) перед тепловыми (ТЭЦ) и... сказано в пророчестве? Ведь полынь по-украински -- чернобыль… Атомная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в...

    Атомная энергетика Харченко Юлия Нафисовна Учитель физики МОУ Бакчарская СОШ Назначение АЭС – выработка электроэнергии АЭС Энергоблок Ядерный реактор «атомный котёл... которых отрабатывались принципиальные технические решения для большой ядерной энергетики . На станции сооружены три энергоблока: два с...

    Атомная энергетика как основа долгоср...

    ... : Генеральная схема размещения объектов электроэнергетики до 2020 г. Атомная энергетика и экономический рост 2007 г. – 23,2 ГВт... -1,8 Источник: Исследование Томского политехнического университета Атомная энергетика SWOT-анализ Сильные стороны Возможности Сопоставимый уровень экономической...

    Атомная энергетика и ее экологические...

    В г. Обнинске. С этого момента начинается история атомной энергетики . Плюсы и минусы АЭС Какие плюсы и минусы есть у... работу, неся с собой ужасную медленную смерть. Атомный ледокол «Ленин» Мирный атом должен жить Атомная энергетика , испытав тяжёлые уроки Чернобыля и других аварий...

    Атомная энергетика России в изменяюще...

    Энергетическом рынке Запрос общества на ускоренное развитие атомной энергетики Демонстрация развивающихся потребительских свойств АЭС: ● гарантированная... охлаждением: удовлетворяющий системным требованиям крупномасштабной атомной энергетики по топливоиспользованию, обращению с минорными актинидами...

    В сотни раз большую мощность. Обнинский институт атомной энергетики Ядерные реакторы Промышленные ядерные pеактоpы первоначально разрабатывались в... и pазвивалась наиболее интенсивно, – в США. Перспективы атомной энергетики . Здесь представляют интерес два типа pеактоpов: «технологически...

    АЭС многие люди стали относиться крайне недоверчиво к атомной энергетике . Некоторые бояться радиационного загрязнения вокруг электростанций. Использование... поверхности морей и океанов это результат действия не атомной энергетики . Радиационное же загрязнение АЭС не превышает естественной фоновой...