Метод минимального риска. Операций в условиях неопределенности

Метод минимального риска используется для определения граничного значения определяющего параметра для принятия решения о состоянии объекта, исходя из условия минимума средних затрат.

Пусть состояние некоторого объекта определяется значением некоторого параметра х. необходимо выбрать такое значение этого параметра х 0 , чтобы:

Исправное состояние характеризуется плотностью распределения параметра х, f (x / D 1) а неисправное – f(x / D 2) (рис 2.8). Кривые f (x / D 1) и f(x / D 2) пересекаются и поэтому невозможно выбрать х 0 так, чтобы правило (2.16) не давало бы ошибочных решений.

Возникающие при принятии решения ошибки подразделяют на ошибки первого и второго рода.

Ошибка первого рода – принятие решения о неисправности (наличии дефекта) объекта, когда в действительности объект находится в исправном состоянии.

Ошибка второго рода – принятие решения об исправном состоянии объекта, когда в действительности объект находится в неисправном состоянии (объект содержит дефект).

Вероятность ошибки первого рода равна произведению вероятности двух событий:

    вероятности того, что объект находится в исправном состоянии;

    вероятности того, что значение определяющего параметра х превысит граничное значение х 0 .

Выражение для определения вероятности ошибки первого рода имеет вид:

где p(D 1 ) – априорная вероятность нахождения объекта в исправном состоянии (считается известной на основании предварительных статистических данных).

Аналогично определяется вероятность ошибки второго рода:

Рис. 2.8. Плотности вероятностей состояний объекта диагностирования

Элементы систем сбора информации: унифицирующие измерительные преобразователи.

Для согласования первичного преобразователя с устройствами системы сбора информации его выходной сигнал должен быть унифицирован, т.е. отвечать некоторым требованиям по уровню, мощности, виду носителя информации и т.д., которые определяются соответствующими ГОСТ.

Для преобразования выходных сигналов первичных преобразователей в унифицированные применяется ряд нормирующих преобразователей. На вход нормирующих преобразователей могут подаваться естественные сигналы первичных преобразователей различных физических величин, а на выходе формируются соответствующие унифицированные сигналы.

Группа средств, обеспечивающих унификацию сигнала между его источником или выходом первичного преобразователя и входом вторичного устройства, относится к классу унифицирующих измерительных преобразователей (УИП).

Различают следующие типы УИП:

    индивидуальные;

    групповые;

    многоканальные.

Индивидуальные УИП (рис. 3.36а)) обслуживают один ПП и включаются между ПП и коммутатором или последующим измерительным преобразователем. Индивидуальные УИП размещаются вместе с ПП непосредственно на объекте исследования.

Они используются для унификации сигналов при сравнительно небольшом количестве измеряемых параметров и при ограниченном времени измерения, не позволяющем использовать групповые УИП.

Индивидуальные УИП позволяют производить:

    преобразование одного унифицированного сигнала в другой;

    гальваническую развязку входных цепей;

    размножение входного сигнала по нескольким выходам.

Однако применение в каждом измерительном комплексе ИИС своего УИП усложняет систему и снижает ее надежность и экономическую эффективность.

Групповые УИП (рис. 3.36б)) являются более эффективными с этой точки зрения они обслуживают определенную группу первичных преобразователей, выходные сигналы которых представляют собой однородные физические величины. Они располагаются в Ииспосле коммутатора и управляются совместно с последним блоком управления.

При построении многоканальных ИИС разнородных физических величин последние группируются по роду физической величины, а каждая группа подключается к соответствующему групповому УИП.

Многоканальные УИП. (рис. 3.36в)) Если измеряемые физические величины в основном разнородные, то в ИИС могут применяться многоканальные УИП, которые представляют собой объединенные в одном корпусе или одной плате несколько индивидуальных УИП. Преобразование информации осуществляется поn входам иn выходам. Основной конструктивной особенностью многоканального УИП является использование общих источника питания и системы контроля для всех индивидуальных УИП.

Рис. 3.36.основные типы унифицирующих

измерительных преобразователей

Основные функции, выполняемые УИП:

    линейные (масштабирование, установление нуля, температурная компенсация);

    нелинейные (лианеризация) преобразования сигналов.

При линейной характеристике первичного преобразователя УИП выполняет линейные операции, которые называются масштабированием . Суть масштабирования заключается в следующем. Пусть входной сигнал изменяется в пределах отy 1 доy 2 , а динамический диапазон выходного сигнала УИП должен лежать в пределах от0 доz . Тогда для совмещения начала динамических диапазонов УИП и первичного преобразователя к сигналу ПП должен быть добавлен сигнал, а затем суммарный сигнал должен быть усилен враз.

Возможен также вариант, при котором выходной сигнал ПП сначала усиливается, а потом совмещаются начала динамических диапазонов.

Первый вариант приведения выходного сигнала к унифицированному виду обычно используется в индивидуальных УИП, а второй в групповых.

Т.к. связь между выходным сигналом yПП и измеряемым параметром чаще всего нелинейная (например, у термопар, платиновых термопреобразователей сопротивления и т.д.) УИП должен выполнять операциюлинеаризации . Линеаризация заключается в спрямлении функции преобразования ПП. В этом случае линеаризующая функция должна иметь вид обратной функции преобразования ПП.

Для линеаризации функции преобразования в УИП используются специальные нелинейные звенья. Они могут включаться до линейного

унифицирующего преобразователя, после него или в цепь обратной связи усилителя, используемого для изменения масштаба измеряемой величины.

U вх

U ОС

U вых

R 1

R 2

R 3

R 4

R 5

D 1

D 2

D 3

Чаще всего линеаризация достигается кусочно–линейной аппроксимацией и выполняется с помощью цепочки последовательно соединенных резисторов, шунтированных стабилитронами или диодами Д 1 Д 3

Рис. 3.37.структурная схема УИП

С ростом напряжения на выходе усилителя увеличивается ток делителя и падение напряжения на каждом из резисторов R 1 R 5 .как только падение напряжения на каком-либо из резисторов достигает напряжения пробоя соответствующего стабилитрона, стабилитрон начинает шунтировать этот резистор. Сопротивления резисторов подбираются таким образом, чтобы получать требуемую зависимость напряжения обратной связиU ОС инвертирующего усилителяУ , снимаемого с резистораR 5 , от выходного напряжения усилителя.

Типовой аналоговый УИП содержит в своем составе:

    выходной усилитель;

    устройство гальванической развязки;

    функциональный преобразователь, линеаризующий сигнал ПП;

    выходной усилитель;

    стабилизированный источник питания.

Некоторые первичные преобразователи в качестве выходного имеют сигнал переменного тока такой сигнал модулируется либо по амплитуде (например, дифференциальные трансформаторные преобразователи), либо по частоте (например, пьезорезонаторы).

В качестве примера рассмотрим структурную схему УИП, предназначенного для преобразования переменного напряжения датчиков давления, перепада давления, расхода, уровня, паросодержания в унифицированный сигнал постоянного тока 0…5 мА (рис. 3.38.).

Рис. 3.38. Структурная схема УИП

Переменное напряжение с дифференциального трансформаторного первичного преобразователя демодулятором преобразуется в пропорциональное напряжение постоянного тока, которое усиливается магнитным МУ и электроннымУ усилителями постоянного тока, охваченными глубокой отрицательной обратной связью через устройство обратной связиОС , позволяющее при необходимости линеаризовать характеристику первичного преобразователя.

Унифицирующие измерительные преобразователи, работающие с частотными ПП, должны выполнять те же функции, что и УИП амплитудных ПП.

В этом методе стоимости решений принимаются одинаково, и отношение правдоподобия принимает вид

Решение аналогично методу минимального риска.

Здесь отношение априорных вероятностей исправного (Р 1) и неисправного (Р 2) состояний принимается равным единице, а условие нахождения K 0 выглядит так:

Пример

Определить предельное значение параметра K 0 , выше которого объект подлежит снятию с эксплуатации.

Объект - газотурбинный двигатель.

Параметр - содержание железа в масле K , (г/т). Параметр имеет нормальное распределение при исправном (D 1 ) и неисправном (D 2 ) состояниях. Известно:

Решение

Метод минимального риска

Согласно выражению (2.4)

После подстановки выражения

и логарифмирования получаем

Преобразуя и решая данное квадратное уравнение, получим:

K 01 =2,24; К 02 =0,47. Искомое граничное значение К 0 =2,24.

Метод минимального числа ошибочных решений

Условие получения K 0 :

Подставляя и раскрывая соответствующие плотности вероятностей, получаем

уравнение:

Подходящим корнем этого уравнения является величина 2,57.

Итак, K 0 = 2,57.

Метод наибольшего правдоподобия

Условие получения К 0 :

F(K 0 /D 1) = F(K 0 /D 2).

Итоговое квадратное уравнение будет выглядеть так:

Искомое K 0 = 2,31.

Определим вероятность ложной тревоги P(H 21 ) , вероятность пропуска дефекта Р(Н 12) , а также величину среднего риска R для граничных значений K 0 , найденных различными методами.

Если в исходных условиях K 1 , то

и

Если в исходных условиях K 1 > K 2 , то

и

Для метода минимального риска при K 0 =2,29 получаем следующее

Для метода минимального числа ошибочных решений при K 0 =2,57:

Для метода наибольшего правдоподобия при K 0 =2,37:

Сведем результаты расчетов в итоговую таблицу.

Задания к задаче №2.

Вариант задания выбирается по двум последним цифрам номера зачетной книжки. Во всех заданиях требуется определить граничное значение K 0 , разделяющее объекты на два класса: исправный и неисправный. Результаты решений наносятся на график (рис. 9.1), который строится на миллиметровке и вклеивается в работу.

Итак, техническое диагностирование объекта осуществляется по параметру K . Для исправного объекта даются среднее значение параметра K 1 и среднеквадратическое отклонение σ 1 . Для неисправного соответственно K 2 и σ 2 . В исходных данных также для каждого варианта приводится соотношение цен C 12 /C 21 . Распределение K принимается нормальным. Во всех вариантах P 1 =0,9; P 2 =0,1.

Варианты заданий приведены в табл. 2.1-2.10.

Исходные данные к вариантам 00÷09 (табл. 2.1):

Объект - газотурбинный двигатель.

Параметр - виброскорость (мм/с).

Неисправное состояние - нарушение нормальных условий работы опор ротора двигателя.

Таблица 2.1

Обозначение величин Варианты
K 1
K 2
σ 1
σ 2
C 12 /C 21

Исходные данные к вариантам 10÷19 (табл. 2.2):

Объект - газотурбинный двигатель.

Параметр Cu ) в масле (г/т).

Неисправное состояние - повышенная концентрация Cu

Таблица 2.2

Обозначение величин Варианты
K 1 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9
K 2
σ 1 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3
σ 2
C 12 /C 21

Исходные данные к вариантам 20÷29 (табл. 2.3):

Объект - подкачиваемый топливный насос топливной системы.

Параметр - давление топлива на выходе (кг/см 2).

Неисправное состояние - деформация крыльчатки.

Таблица 2.3

Обозначение величин Варианты
K 1 2,50 2,55 2,60 2,65 2,70 2,75 2,80 2,85 2,90 2,95
K 2 1,80 1,85 1,90 1,95 2,00 2,05 2,10 2,15 2,20 2,25
σ 1 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
σ 2 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
C 12 /C 21

Исходные данные к вариантам 30÷39 (табл. 2.4):

Объект - газотурбинный двигатель.

Параметр - уровень виброперегрузок (g ).

Неисправное состояние - раскатка наружной обоймы подшипников.

Таблица 2.4

Обозначение величин Варианты
K 1 4,5 4,6 4,7 4,8 4,9 5,0 5,1 5,2 5,3 5,4
K 2 6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9
σ 1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
σ 2 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7
C 12 /C 21

Исходные данные к вариантам 40÷49 (табл. 2.5):

Объект - межвальный подшипник газотурбинного двигателя.

Параметр - показания виброакустического прибора контроля состояния подшипника (µа).

Неисправное состояние - появление следов выкрашивания на беговых дорожках подшипника.

Таблица 2.5

Обозначение величин Варианты
K 1
K 2
σ 1
σ 2
C 12 /C 21

Исходные данные к вариантам 50÷59 (табл. 2.6)

Объект - газотурбинный двигатель.

Параметр - содержание железа (Fe ) в масле (г/т).

Неисправное состояние - повышенная концентрация Fe в масле из-за ускоренного изнашивания зубчатых соединений в коробке приводов.

Таблица 2.6

Обозначение величин Варианты
K 1 1,95 2,02 1,76 1,82 1,71 1,68 1,73 1,81 1,83 1,86
K 2 4,38 4,61 4,18 4,32 4,44 4,10 4,15 4,29 4,39 4,82
σ 1 0,3 0,3 0,3 0.3 0,3 0,3 0,3 0,3 0,3 0,3
σ 2
C 12 /C 21

Исходные данные к вариантам 60÷69 (табл. 2.7):

Объект - масло для смазки газотурбинного двигателя.

Параметр - оптическая плотность масла, %.

Неисправное состояние - пониженные эксплуатационные свойства масла, имеющего оптическую плотность.

Таблица 2.7

Обозначение величин Варианты
K 1
K 2
σ 1
σ 2
C 12 /C 21

Исходные данные к вариантам 70÷79 (табл. 2.8):

Объект - топливные фильтроэлементы.

Параметр - концентрация примесей меди (Cu ) в масле (г/т).

Неисправное состояние - повышенная концентрация Cu в масле из-за интенсификации процессов изнашивания омедненных шлицевых соединений приводных валов.

Таблица 2.8

Обозначение величин Варианты
K 1
K 2
σ 1
σ 2
C 12 /C 21

Исходные данные к вариантам 80÷89 (табл. 2.9)

Объект - аксиально-поршневой насос.

Параметр - величина производительности насоса, выражаемая объемным

КПД (в долях от 1,0).

Неисправное состояние - низкое значение объемного КПД, связанное с поломкой насоса.

Таблица 2.9

Обозначение величин Варианты
K 1 0,92 0,91 0,90 0,89 0,88 0,07 0,86 0,85 0,84 0,83
K 2 0,63 0,62 0,51 0,50 0,49 0,48 0,47 0,46 0,45 0,44
σ 1 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,11
σ 2 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14 0,14
C 12 /C 21

Исходные данные к вариантам 90÷99 (табл. 2.10)

Объект - система управления самолета, состоящая из жестких тяг.

Параметр - суммарный осевой люфт сочленений, мкм.

Неисправное состояние - повышенный суммарный осевой люфт из-за износа сопрягаемых пар.

Таблица 2.10

Обозначение величин Варианты
K 1
K 2
σ 1
σ 2
C 12 /C 21

Метод минимального риска. Этот метод был развит в связи с задачами радиолокации, но может вполне успешно использоваться в задачах технической диагностики.

Пусть проводится измерение параметра х (например, уровня вибраций изделия) и на основании данных измерений требуется сделать вывод о возможности продолжения эксплуатации (диагноз - исправное состояние) или о направлении изделия в ремонт (диагноз - неисправное состояние).

На рис. 1 даны значения плотности вероятности диагностического параметра х для двух состояний.

Пусть установлена контрольная норма для уровня вибраций .

В соответствии с этой нормой принимают:

Знак означает, что объект с уровнем вибраций х относят к данному состоянию.

Из рис. 1 следует, что любой выбор величины связан с определенным риском, так как кривые пересекаются.

Существуют два вида риска: риск «ложной тревоги», когда исправное изделие признают неисправным, и риск «пропуска цели», когда неисправное изделие считают годным.

В теории статистического контроля их называют риском поставщика и риском приемщика или ошибками первого и второго рода.

При данном вероятность ложной тревоги

и вероитность пропуска цели

Задача теории статистических решений состоит в выборе оптимального значения

По способу минимального риска рассматривается общая стоимость риска

где - «цена» ложной тревоги; - «цена» пропуска цели; - априорные вероятности диагнозов (состояний), определяемые по предварительным

Рис. 1. Плотность вероятности диагностического признака

статистическим данным. Величина представляет собой «среднее значение» потери при ошибочном решении.

Из необходимого условия минимума

получаем

Можно показать, что для одномодальных распределений условие (23) всегда обеспечивает минимум величины Если стоимость ошибочных решений одинакова, то

Последнее соотношение минимизирует общее число ошибочных решений. Оно вытекает также из метода Байеса.

Метод Неймана-Пирсона. В этом методе исходят из условия минимума вероятности пропуска дефекта при допустимом уровне вероятности ложной тревоги.

Таким образом, вероятность ложной тревоги

где - допустимый уровень ложной тревоги.

В рассматриваемых однопараметрических задачах минимум вероятности пропуска цели достигается при

Последнее условие и определяет граничное значение параметра (значение

При назначении величины а учитывают следующее:

1) число снимаемых с эксплуатации изделий должно превышать ожидаемое число дефектных изделий в силу неизбежных погрешностей метода оценки состояния;

2) принимаемое значение ложной тревоги не должно, без крайней необходимости, нарушать нормальную эксплуатацию или приводить к большим экономическим потерям.

Государственный комитет РФ по рыболовству

Федеральное государственное образовательное

Учреждение высшего профессионального образования

Камчатский государственный технический университет

Кафедра математики

Курсовая работа по дисциплине

«Математическая экономика»

На тему: «Риск и страхование.»

Введение…………………………………………………………..……………….....3

1.КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ …………….............................................................................4 1.1. Определение и сущность риска…………………………………..……………..…...4

1.2. Матрицы последствий и рисков…………………………………….……..……6

1.3.Анализ связанной группы решений в условиях полной неопределенности…………………………………………………...……………......7

1.4. Анализ связанной группы решений в условиях частичной неопределенности…………………………………………………………………..8

1.5. Оптимальность по Парето…………………………………………………….9

2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ ОПЕРАЦИЙ……..…..…...12

2.1. Количественная оценка риска………………………………………………..12

2.2. Риск отдельной операции……………………………………………………..13 2.3. Некоторые общие измерители риска……………………………………….15

2.4. Риск разорения……………………………………………………………..…16

2.5. Показатели риска в виде отношений………………………………………..17

2.6. Кредитный риск……………………………………………………………….17

3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ……………………………………….…….18

3.1. Диверсификация………………………………………………………………18

3.2. Хеджирование…………………………………………………………………21

3.3. Страхование…………………………………………………………………...22

3.4. Качественное управление рисками………………………………….……….24

Практическая часть……………………………………………………………...….27

Заключение………………………………………………………..………….…. ..29

Список литературы…………………………………………….……….……..….30

Приложения……………………………………………………….…………..…...31

ВВЕДЕНИЕ

Развитие мировых финансовых рынков, характеризующееся усилением процессов глобализации, интернационализации, либерализации, оказывает непосредственное влияние на всех участников мирового экономического пространства, основными членами которого являются крупные финансово-кредитные институты, производственные и торговые корпорации. Все участники мирового рынка непосредственно ощущают на себе влияние всех вышеперечисленных процессов и в своей деятельности должны учитывать новые тенденции развития финансовых рынков. Число рисков, возникающих в деятельности таких компаний, существенно увеличилось в последние годы. Это связано с появлением новых финансовых инструментов, активно используемых участниками рынка. Применение новых инструментов хотя и позволяет снизить принимаемые на себя риски, но также связано с определенными рисками для деятельности участников финансового рынка. Поэтому все большее значение для успешной деятельности компании приобретает в настоящее время осознание роли риска в деятельности компании и способность риск-менеджера адекватно и своевременно реагировать на сложившуюся ситуацию, принять правильное решение в отношении риска. Для этого необходимо использовать различные инструменты страхования и хеджирования от возможных потерь и убытков, набор которых в последние годы существенно расширился и включает как традиционные приемы страхования, так и методы хеджирования с использованием финансовых инструментов.

От того, насколько правильно будет выбран тот или иной инструмент, будет зависеть, в конечном счете, эффективность деятельности компании в целом.

Актуальность темы исследования предопределена также незавершенностью разработки теоретической основы и классификации страхования финансовых рисков и выявления его особенностей в России.

Глава 1. КЛАССИЧЕСКАЯ СХЕМА ОЦЕНКИ ФИНАНСОВЫХ

ОПЕРАЦИЙ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

Риск одно из важнейших понятий, сопутствующих любой активной деятельности человека. Вместе с тем это одно из самых неясных, многозначных и запутанных понятий. Однако, несмотря на его неясность, многозначность и запутанность, во многих ситуациях суть риска очень хорошо понимается и воспринимается. Эти же качества риска являются серьезной преградой для его количественной оценки, которая во многих случаях необходима и для развития теории и на практике.

Рассмотрим классическую схему принятия решений в условиях неопределенности.

1.1. Определение и сущность риска

Напомним, что финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку и цель проведения которой заключается в максимизации дохода разности между конечной и начальной

оценками (или какого-нибудь другого подобного показателя).

Почти всегда финансовые операции проводятся в условиях неопределенности и потому их результат невозможно предсказать заранее. Поэтому финансовые операции рискованны : при их проведении возможны как прибыль, так и убыток (или не очень большая прибыль по сравнению с той, на что надеялись проводившие эту операцию).

Проводящий операцию (принимающий решение) называется ЛПР Лицо ,

принимающее решение . Естественно, ЛПР заинтересовано в успехе операции и является за нее ответственным (иногда только перед самим собой). Во многих случаях ЛПР это инвестор, вкладывающий деньги в банк, в какую то финансовую операцию, покупающий ценные бумаги и т.п.

Определение. Операция называется рискованной , если она может иметь несколько исходов, не равноценных для ЛПР.

Пример 1 .

Рассмотрим три операции с одним и тем же множеством двух исходов

альтернатив A , В , которые характеризуют доходы, получаемые ЛПР. Все три

операции рискованные. Понятно, что рискованными являются первая и вторая

операции, так как в результате каждой операции возможны убытки.

Но почему должна быть признана рискованной третья операция? Ведь она сулит только положительные доходы ЛПР? Рассматривая возможные исходы третьей операции, видим, что можем получить доход в размере 20 единиц, поэтому возможность получения дохода в 15 единиц рассматривается как неудача, как риск недобрать 5 единиц дохода. Итак, понятие риска обязательно предполагает рискующего того, к кому этот риск относится, кто озабочен результатом операции. Сам риск возникает, только если операция может окончиться исходами, не равноценными для него, несмотря на, возможно, все его усилия по управлению этой операцией.

Итак, в условиях неопределенности операция приобретает еще одну характеристику риск. Как оценить операцию, с точки зрения ее доходности и риска? На этот вопрос на так просто ответить, главным образом из-за многогранности понятия риска. Существует несколько разных способов такой оценки. Рассмотрим один из таких подходов.

1.2. Матрицы последствий и рисков

Допустим, рассматривается вопрос о проведении финансовой операции. Неясно, чем она может закончиться. В связи с этим проводится анализ нескольких возможных решений и их последствий. Так приходим к следующей общей схеме принятия решений (в том числе финансовых) в условиях неопределенности.

Предположим, что ЛПР рассматривает несколько возможных решений

i =1, …,n . Ситуация неопределенна, понятно лишь, что наличествует какой то из вариантов j =1,….,n . Если будет принято i– е решение, а ситуация есть j– я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q =(q ij) называется матрицей последствий (возможных решений). Допустим, мы хотим оценить риск, который несет i -е решение. Нам неизвестна реальная ситуация. Но если бы мы её знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Если ситуация j -я, то было бы принято решение, дающее доход q i =max q ij . Значит, принимая i -е решение, мы рискуем получить не q j , а только q ij , т.е. принятие i -го решения несет риск не добрать r ij =q j –q ij называется матрицей рисков .

Пример 2.

Пусть матрица последствий есть

Составим матрицу рисков. Имеем q 1 =max q i1 =8, q 2 =5, q 3 =8, q 4 =12. Следовательно, матрица рисков есть

1.3. Анализ связанной группы решений в условиях полной неопределенности

Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации (например, о вероятностях тех или иных вариантов реальной ситуации). Какие же существуют правила рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма).

Рассматривая i -е решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход: a i =min q a 0 с наибольшим a i0 . Итак, правило Вальда рекомендует принять решение i 0 такое, что a i0 =max a i =max(min q ij).Так, в примере 2 имеем a 1 =2, a 2 =2, a 3 =3, a 4 = 1. Теперь из чисел 2, 2, 3, 1 находим максимальное - 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска).

При применении этого правила анализируется матрица рисков R =(r ij). Рассматривая i -е решение, будем полагать, что на самом деле складывается ситуация максимального риска b i =max r ij . Но теперь выберем решение i 0 с наименьшим b i0 . Итак, правило Сэвиджа рекомендует принять решение i 0 такое, что b i0 =min b i =min(max r ij).Так, в примере 2 имеем b 1 =8, b 2 =6, b 3 =5, b 4 =7. Теперь из чисел 8, 6, 5, 7 находим минимальное – 5.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации).

Принимается решение i, котором достигается максимум

{λ min q ij +(1 λ max q ij)},

где 0≤λ ≤1. Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0 правило Гурвица приближается к правилу «розового оптимизма» (догадайтесь сами, что это значит). В примере 2 при λ=1/2 правило Гурвица рекомендует второе решение.

1.4. Анализ связанной группы решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности р j того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.

Правило максимизации среднего ожидаемого дохода.

Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Q i с рядом распределения. Математическое ожидание М [Q i ] и есть средний ожидаемый доход, обозначаемый также Q i . Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход. Предположим, что в схеме примера 2 вероятности есть 1/2, 1/6, 1/6, 1/6.

Тогда Q 1 =29/6, Q 2 =25/6, Q 3 =7, Q 4 =17/6. Максимальный средний ожидаемый доход равен 7 и соответствует третьему решению.

Правило минимизации среднего ожидаемого риска.

Риск фирмы при реализации i -го решения является случайной величиной R i с рядом распределения

Математическое ожидание M [R i ] и есть средний ожидаемый риск, обозначаемый также R i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск. Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем R 1 =20/6, R 2 =4, R 3 =7/6, R 4 =32/6. Минимальный средний ожидаемый риск равен 7/6 и соответствует третьему решению.

Замечание. Отличие частичной (вероятностной) неопределенности от полной неопределенности очень существенно. Конечно, принятие решений по правилам Вальда, Сэвиджа, Гурвица никто не считает окончательными, самыми лучшими. Но когда мы начинаем оценивать вероятность варианта, это уже предполагает повторяемость рассматриваемой схемы принятия решений: это уже было в прошлом, или это будет в будущем, или это повторяется где-то в пространстве, например, в филиалах фирмы.

1.5. Оптимальность по Парето

Итак, при попытке выбрать наилучшее решение мы столкнулись в предыдущем параграфе с тем, что каждое решение имеет две характеристики средний ожидаемый доход и средний ожидаемый риск. Теперь имеем оптимизационную двухкритериальную задачу по выбору наилучшего решения.

Существует несколько способов постановки таких оптимизационных задач.

Рассмотрим такую задачу в общем виде. Пусть А - некоторое множество операций, каждая операция а имеет две числовые характеристики Е (а ), r (а ) (эффективность и риск, например) и разные операции обязательно различаются хотя бы одной характеристикой. При выборе наилучшей операции желательно, чтобы Е было больше, а r меньше.

Будем говорить, что операция а доминирует операцию b, и обозначать а >b, если Е (а )≥Е (b ) и r (а )≤r (b ) и хотя бы одно из этих неравенств, строгое. При этом операция а называется доминирующей , а операция b - доминируемой . Ясно, что ни при каком разумном выборе наилучшей, операции доминируемая операция не может быть признана таковой. Следовательно, наилучшую операцию надо искать среди недоминируемых операций. Множество этих операций называется множеством Парето или множеством оптимальности по Парето .

Имеет место чрезвычайно важное утверждение.

Утверждение.

На множестве Парето каждая из характеристик Е , r - (однозначная) функция другой. Другими словами, если операция принадлежит множеству Парето, то по одной ее характеристике можно однозначно определить другую.

Доказательство. Пусть а ,b - две операции из множества Парето, тогда r (а ) и r (b ) числа. Предположим, что r (а )≤r (b ), тогда Е (а ) не может быть равно Е (b ), так как обе точки а , b принадлежат множеству Парето. Доказано, что по характеристике r E . Так же просто доказывается, что по характеристике Е можно определить характеристику r .

Продолжим анализ приведенного в § 10.2 примера. Рассмотрим графическую иллюстрацию. Каждую операцию (решение) (R, Q ) отметим как точку на плоскости доход откладываем вверх по вертикали, а риск вправо по горизонтали (рис. 10.1). Получили четыре точки и продолжаем анализ примера 2.

Чем выше точка (R, Q ), тем более доходная операция, чем точка правее, тем более она рисковая. Значит, нужно выбирать точку выше и левее. В нашем случае множество Парето состоит только из одной третьей операции.

Для нахождения лучшей операции иногда применяют подходящую взвешивающую формулу, которая для операции Q с характеристиками (R, Q ) даёт одно число, по которому и определяют лучшую операцию. Например, пусть взвешивающая формула есть f (Q )=2Q–R . Тогда для операций (решений) примера 2 имеем: f (Q 1)=2*29/6 20/6=6,33; f (Q 2)=4,33; f (Q 3)=12,83; f (Q 4)=0,33. Видно, что третья операция – лучшая, а четвертая худшая.

Глава 2. ХАРАКТЕРИСТИКИ ВЕРОЯТНОСТНЫХ ФИНАНСОВЫХ

ОПЕРАЦИЙ

Финансовая операция называется вероятностной , если существует вероятность каждого ее исхода. Прибыль такой операции разность конечной и начальной денежных ее оценок является случайной величиной. Для такой операции удается ввести количественную оценку риска, согласующуюся с нашей интуицией.

2.1. Количественная оценка риска

В предыдущей главе дано определение рискованной операции, как имеющей, по крайней мере, два исхода, не равноценных в системе предпочтений ЛПР. В контексте данной главы вместо ЛПР можно, употреблять также термин «инвестор» или какой-либо подобный, отражающий заинтересованность проводящего операцию (возможно, пассивно) в ее успехе.

При исследовании риска операции встречаемся с фундаментальным утверждением.

Утверждение.

Количественная оценка риска операции возможна только при вероятностной характеристике множества исходов операции.

Пример 1.

Рассмотрим две вероятностные операции:

Несомненно, риск первой операции меньше риска второй операции. Что же касается того, какую операцию выберет ЛПР, это зависит от его склонности к риску (подобные вопросы подробно рассмотрены в дополнении к ч. 2).

2.2. Риск отдельной операции

Так как мы хотим количественно оценить рискованность операции, а это невозможно сделать без вероятностной характеристики операции, то ее исходам припишем вероятности и оценим каждый исход доходом, который ЛПР получает при этом исходе. В итоге получим случайную величину Q, которую естественно назвать случайным доходом операции, или просто случайным доходом . Пока ограничимся дискретной случайной величиной (д.с.в.):

где q j - доход, а р j вероятность этого дохода.

Операцию и представляющую ее случайную величину случайный доход будем отождествлять при необходимости, выбирая из этих двух терминов более удобный в конкретной ситуации.

Теперь можно применить аппарат теории вероятностей и найти следующие характеристики операции.

Средний ожидаемый доход математическое ожидание с.в. Q , т.е. М [Q ]=q 1 p 1 +…+q n p n , обозначается еще m Q , Q, употребляется также название эффективность операции .

Дисперсия операции - дисперсия с.в. Q , т.е. D [Q ]=М [(Q - m Q) 2 ], обозначается также D Q .

Среднее квадратическое отклонение с.в. Q , т.е. [Q ]=√(D [E ]), обозначается

также σ Q .

Отметим, что средний ожидаемый доход, или эффективность операции, как и среднее квадратическое отклонение, измеряется в тех же единицах, что и доход.

Напомним фундаментальный смысл математического ожидания с.в.

Среднее арифметическое значений, принятых с.в. в длинной серии опытов, примерно равно ее математическому ожиданию. Все более признанным становится оценка рискованности всей операции посредством среднего квадратического отклонения случайной величины дохода Q , т.е. посредством σ Q . В данной книге это основная количественная оценка.

Итак, риском операции называется число σ Q среднее квадратическое отклонение случайного дохода операции Q . Обозначается также r Q .

Пример 2.

Найдем риски первой и второй операций из примера 1:

Сначала вычисляем математическое ожидание с.в. Q 1:

т 1 = 5*0,01+25*0,99=24,7. Теперь вычислим дисперсию по формуле D 1 =M [Q 1 2 ]-m 1 2 . Имеем М [Q 1 2 ]= 25*0,01+625*0,99=619. Значит, D 1 =619 (24,7)2=8,91 и окончательно r 1 =2,98.

Аналогичные вычисления для второй операции дают m 2 =20; r 2 =5. Как и «полагала интуиция», первая операция менее рискованная.

Предлагаемая количественная оценка риска вполне согласуется с интуитивным пониманием риска как степени разбросанности исходов операции ведь дисперсия и среднее квадратическое отклонение (квадратный корень из дисперсии) и суть меры такой разбросанности.

Другие измерители риска.

По нашему мнению, среднее квадратическое отклонение является наилучшим измерителем риска отдельной операции. В гл. 1 рассмотрены классическая схема принятия решений в условиях неопределенности и оценки риска в этой схеме. Полезно познакомиться: с другими измерителями риска. В большинстве случаев эти измерители просто вероятности нежелательных событий.

2.3. Некоторые общие измерители риска

Пусть известна функция распределения F случайного дохода операции Q. Зная ее, можно придать смысл следующим вопросам и ответить на них.

1. Какова вероятность того, что доход операции будет менее заданного s . Можно спросить по другому: каков риск получения дохода менее заданного? Ответ: F (s ).

2. Какова вероятность того, что операция окажется неуспешной, т.е. ее доход будет меньше среднего ожидаемого дохода m ?

Ответ: F (m ) .

3. Какова вероятность убытков и каков их средний ожидаемый размер? Или каков, риск убытков и их оценка?

4. Каково отношение средних ожидаемых убытков к среднему ожидаемому доходу? Чем меньше это отношение, тем меньше риск разорения, если ЛПР вложил в операцию все свои средства.

При анализе операций ЛПР желает иметь доход побольше, а риск поменьше. Такие оптимизационные задачи называют двухкритериальными. При их анализе два критерия – доход и риск часто «свертывают» в один критерий. Так возникает, например, понятие относительного риска операции . Дело в том, что одно и то же значение среднего квадратического отклонения σ Q , которое измеряет риск операции, воспринимается по-разному в зависимости от величины среднего ожидаемого дохода т Q , поэтому величину σ Q / т Q иногда называют относительным риском операции. Такую меру риска можно трактовать как свертку двухкритериальной задачи

σ Q →min,

т Q →max,

т.е. максимизировать средний ожидаемый доход при одновременной минимизации риска.

2.4. Риск разорения

Так называется вероятность столь больших потерь, которые ЛПР не может компенсировать и которые, следовательно, ведут к его разорению.

Пример 3.

Пусть случайный доход операции Q имеет следующий ряд распределения, и потери 35 или более ведут к разорению ЛПР. Следовательно, риск разорения в результате данной операции равен 0,8;

Серьезность риска разорения оценивается именно величиной соответствующей вероятности. Если эта вероятность очень мала, то ею часто пренебрегают.

2.5. Показатели риска в виде отношений.

Если средства ЛПР равны С , то при превышении убытков У над С возникает реальный риск разорения. Для предотвращения этого отношение К 1 = У / С , называемое коэффициентом риска , ограничивают специальным числом ξ 1 . Операции, для которых этот коэффициент превышает ξ1, считают особо рискованными. Часто учитывают также вероятность р убытков У и тогда рассматривают коэффициент риска К 2 = р Y/ С , который ограничивают другим числом ξ 2 (ясно, что ξ 2 ≤ ξ 1). В финансовом менеджменте чаще применяют обратные отношения С / У и С /(рУ ), которые называют коэффициентами покрытия рисков и которые ограничиваются снизу числами 1/ ξ 1 и 1/ ξ 2 .

Именно такой смысл имеет так называемый коэффициент Кука, равный отношению:

Коэффициент Кука используется банками и другими финансовыми компаниями. В роли весов при «взвешивании» выступают вероятности риски потери соответствующей актива.

2.6. Кредитный риск

Так называется вероятность невозврата в срок взятого кредита.

Пример 4.

Статистика запросов кредитов такова: 10% государственные органы, 30% другие банки и остальные физические лица. Вероятности невозврата взятого кредита соответственно таковы: 0,01; 0,05 и 0,2. Найти вероятность невозврата очередного запроса на кредит. Начальнику кредитного отдела доложили, что получено сообщение о невозврате кредита, но в факсовом сообщении имя клиента было плохо пропечатано. Какова вероятность, что данный кредит не возвращает какой то банк?

Решение. Вероятность невозврата найдем по формуле полной вероятности. Пусть Н 1 - запрос поступил от госоргана, Н 2 от банка, Н 3 от физического лица и А - невозврат рассматриваемого кредита. Тогда

Р (А )= Р (Н 1)Р H1 А + Р (Н 2)Р H2 А + Р (Н з)P H3 А = 0,1*0,01+0,3*0,05+0,6*0,2=0,136.

Вторую вероятность найдем по формуле Байеса. Имеем

Р A Н 2 =Р (Н 2)Р H2 А / Р (А )= 0,015/0,136=15/136≈1/9.

Как в реальности определяют все приведенные в этом примере данные, например, условные вероятности Р H1 А ? По частоте невозврата кредита для соответствующей группы клиентов. Пусть физические лица взяли всего 1000 кредитов и 200 не вернули. Значит, соответствующая вероятность Р H3 А оценивается как 0,2. Соответствующие данные 1000 и 200 берутся из информационной базы данных банка.

Глава 3. ОБЩИЕ МЕТОДЫ УМЕНЬШЕНИЯ РИСКОВ

Как правило, риск стараются уменьшить. Для этого существует немало методов. Большая группа таких методов связана с подбором других операций. Таких, чтобы суммарная операция имела меньший риск.

3.1. Диверсификация

Напомним, что дисперсия суммы некоррелированных случайных величин равна сумме дисперсий. Из этого вытекает следующее утверждение, лежащее в основе метода диверсификации.

Утверждение 1.

Пусть О 1 ,...,О n некоррелированные операции с эффективностями е 1 ,..., е n и рисками r 1 ,...,r 2 . Тогда операция «среднее арифметическое» О =(О 1 +...+O n)/ п имеет эффективность е =(e 1 +...+e n)/n и риск r =√(r 1 2 +…r 2 n)/n .

Доказательство этого утверждения простое упражнение на свойства математического ожидания и дисперсии.

Следствие 1.

Пусть операции некоррелированы и а≤ e i и b r i ≤c с для всех i =1,..,n . Тогда эффективность операции «среднее арифметическое» не меньше а (т.е. наименьшей из эффективностей операций), а риск удовлетворяет неравенству b n r c n и, таким образом, при увеличении n уменьшается. Итак, при увеличении числа некоррелированных операций их среднее арифметическое имеет эффективность из промежутка эффективностей этих операций, а риск однозначно уменьшается.

Этот вывод называется эффектом диверсификации (разнообразия) и представляет собой в сущности единственно разумное правило работы на финансовом и других рынках. Этот же эффект воплощен в народной мудрости «не клади все яйца в одну корзину». Принцип диверсификации гласит, что нужно проводить разнообразные, не связанные друг с другом операции, тогда эффективность окажется усредненной, а риск однозначно уменьшится.

При применении этого правила нужно быть осторожным. Так, нельзя отказаться от некоррелированности операций.

Предложение 2.

Предположим, что среди операций есть ведущая, с которой все остальные находятся в положительной корреляционной связи. Тогда риск операции «среднее арифметическое» не уменьшается при увеличении числа суммируемых операций.

Действительно, для простоты примем более сильное предположение, именно, что все операции О i ; i =1,...,n , просто копируют операцию O 1 в каких то масштабах, т.е. O i =k i O 1 и все коэффициенты пропорциональности k i положительны. Тогда операция «среднее арифметическое» О =(O 1 +...+O n)/n есть просто операция O 1 в масштабе

и риск этой операции

Поэтому, если операции примерно одинаковы по масштабности, т.е. k i ≈1, то и

Мы видим, что риск операции «среднее арифметическое» не уменьшается при увеличении числа операций.

3.2. Хеджирование

В эффекте диверсификации ЛПР составлял новую операцию из нескольких, имеющихся в его распоряжении. При хеджировании (от англ. hedge - изгородь) ЛПР подбирает или даже специально конструирует новые операции, чтобы, проводя их совместно с основной, уменьшить риск.

Пример 1.

По контракту российская фирма через полгода должна получить крупный платеж от украинской компании. Платеж равен 100 000 гривен (примерно 600 тыс. руб.) и будет произведен, именно в гривнах. У российской фирмы, есть опасения, что за эти полгода курс гривны упадет по отношению к российскому рублю. Фирма хочет подстраховаться от такого падения и заключает форвардный контракт с одним из украинских банков на продажу тому 100 000 гривен по курсу 6 руб. за гривну. Таким образом, что бы ни произошло за это время с курсом рубль гривна, российская фирма не понесет из за этого убытков.

В этом и заключается суть хеджирования. При диверсификации наибольшую ценность представляли независимые (или некоррелированные) операции. При хеджировании подбираются операции, жестко связанные с основной, но, так сказать, другого знака, говоря более точно, отрицательно коррелированные с основной операцией.

Действительно, пусть O 1 основная операция, ее риск r 1 , O 2 некоторая дополнительная операция, ее риск r 2 , О - операция сумма, тогда дисперсия этой операции D =r 1 2 +2k 12 r 1 r 2 +r 2 2 , где k - коэффициент корреляции эффективностей основной и дополнительной операций. Эта дисперсия может быть меньше дисперсии основной операции, только если этот коэффициент корреляции отрицателен (точнее: должно быть 2k 12 r 1 r 2 +r 2 2 <0, т.е. k 1 2 <–r 2 /(2r 1)).

Пример 2.

Пусть ЛПР решает проводить операцию O 1 .

Ему советуют провести одновременно операцию S , жестко связанную с О . В сущности обе операции надо изобразить с одним и тем же множеством исходов.

Обозначим суммарную операцию через О , эта операция есть сумма операций O 1 и S . Вычислим характеристики операций:

M [O 1 ]=5, D [O 1 ]=225, r 1 =15;

M [S ]=0, D [S ]=25;

M [O ]=5, D [O ]=100, r =10.

Средняя ожидаемая эффективность операции осталась неизменной, а риск уменьшился из-за сильной отрицательной коррелированности дополнительной операции S по отношению к основной операции.

Конечно, на практике не так легко подобрать дополнительную операцию, отрицательно коррелированную с основной, да еще с нулевой эффективностью. Обычно допускается небольшая отрицательная эффективность дополнительной операции и из-за этого эффективность суммарной операции становится меньше, чем у основной. Насколько допускается уменьшение эффективности на единицу уменьшения риска зависит от отношения ЛПР к риску.

3.3. Страхование

Можно рассматривать страхование как один из видов хеджирования. Поясним некоторые термины.

Страхователь (или застрахованный) тот, кто страхуется.

Страховщик - тот, кто страхует.

Страховая сумма - сумма денежных средств, на которую застраховано имущество, жизнь, здоровье страхователя. Эта сумма выплачивается страховщиком страхователю при наступлении страхового случая. Выплата страховой суммы называется страховым возмещением .

Страховой платеж выплачивается страхователем страховщику.

Обозначим страховую сумму ω , страховой платеж s , вероятность страхового случая р . Предположим, что застрахованное имущество оценивается в z. По правилам страхования ω≤ z.

Таким образом, можно предложить следующую схему:

Таким образом, страхование представляется выгоднейшим мероприятием с точки зрения уменьшения риска, если бы не страховой платеж. Иногда страховой платеж составляет заметную часть страховой суммы и представляет собой солидную сумму.

3.4. Качественное управление рисками

Риск столь сложное понятие, что весьма часто невозможна его количественная оценка. Поэтому широко развиты методы управления риском качественного характера, без количественной оценки. К таким относятся многие банковские риски. Наиболее важные из них это кредитный риск и риски неликвидности и неплатежеспособности.

1. Кредитный риск и способы его уменьшения . При выдаче кредита (или ссуды) всегда есть опасение, что клиент не вернет кредит. Предотвращение невозврата, уменьшение риска невозврата кредитов это важнейшая задача кредитного отдела банка. Какие же существуют способы уменьшения риска невозврата кредита.

Отдел должен постоянно систематизировать и обобщать информацию по выданным кредитам и их возвращению. Информация по выданным кредитам должна быть систематизирована по величине выданных кредитов, должна быть построена классификация клиентов, которые взяли кредит.

Отдел (банк в целом) должен вести так называемую кредитную историю, своих клиентов, в том, числе и потенциальных (т.е. когда, где, какие кредиты брал и как их возвращал клиент). Пока у нас в стране большинство клиентов не имеет своей кредитной истории.

Есть различные способы обеспечения кредита, например, клиент отдает что-то в залог и если не возвращает кредит, то банк становится собственником залога;

В банке должна быть четкая инструкция по выдаче кредита (кому какой кредит можно выдать и на какой срок);

Должны быть установлены четкие полномочия по выдаче кредита. Скажем, рядовой сотрудник отдела может выдать кредит не более $1000, кредиты до $10000 может выдать начальник отдела, свыше $10 000, но не более $100 000, может выдать вице-президент по финансам и кредиты свыше $100 000 выдает только совет директоров (читайте роман А. Хейли «Менялы»);

Для выдачи особо больших и опасных кредитов объединяются несколько банков и сообща выдают этот кредит;

Существуют страховые компании, которые страхуют невозврат кредита (но есть точка зрения, что невозврат кредита не подлежит страхованию это риск самого банка);

Существуют внешние ограничения по выдаче кредитов (например, установленные Центральным банком); скажем, не разрешается выдавать очень крупный кредит одному клиенту;

2. Риски неликвидности , неплатежеспособности и способы их уменьшения . Говорят, что средства банка достаточно ликвидны, если банк способен быстро и без особых для себя потерь обеспечить выплату своим клиентам денежных средств, которые они доверили банку на кратковременной основе. Риск неликвидности это и есть риск не справиться с этим. Впрочем, этот риск лишь для краткости назван так, полное его название риск несбалансированности баланса в части ликвидности .

Все активы банка по их ликвидности делятся на три группы:

1) первоклассные ликвидные средства (кассовая наличность, средства банка на корреспондентском счете в Центробанке, государственные ценные бумаги, векселя крупных надежных компаний;

2) ликвидные средства (ожидаемые краткосрочные платежи банку, некоторые виды ценных бумаг, некоторые материальные активы, которые могут быть быстро и без больших потерь проданы и т.п.);

3) неликвидные средства (просроченные кредиты и ненадежные долги, многие материальные активы банка, прежде всего здания и сооружения).

При анализе риска неликвидности учитываются в первую очередь первоклассные ликвидные средства.

Говорят, что банк платежеспособен, если способен расплатиться со всеми своими клиентами, но, возможно, для этого придется провести какие-нибудь крупные и длительные операции, вплоть до продажи оборудования, зданий, принадлежащих банку, и т.д. Риск неплатежеспособности возникает, когда неясно, сумеет ли банк расплатиться.

Платежеспособность банка зависит от очень многих факторов. Центральный банк устанавливает ряд условий, в которые банки должны выполнять для поддержания своей платежеспособности. Самые важные из них: ограничение обязательств банка; рефинансирование банков Центральным банком; резервирование части средств банка на корреспондентском счете в Центральном банке.

Риск неликвидности ведет к возможным излишним потерям банка: чтобы расплатиться с клиентом, банку, возможно, придется одолжить деньги у других банков по более высокой процентной ставке, чем в обычных условиях. Риск неплатежеспособности вполне может привести к банкротству банка.

Практическая часть

Предположим, ЛПР имеет возможность составить операцию из четырех некоррелированных операций, эффективности и риски которых даны в таблице.

Рассмотрим несколько вариантов составления операций из этих операций с равными весами.

1. Операция составлена только из 1-й и 2-й операций. Тогда e 12 =(3+5)/2=4;

r 12 = (2 2 +4 2)/2≈2,24

2. Операция составлена только из 1-й, 2-й и 3-й операций.

Тогда e 123 =(3+5+8)/3=5,3; r 123 =√(2 2 +4 2 +6 2)/3≈2,49.

3. Операция составлена из всех четырех операций. Тогда

e 1 4 =(3+5+8+10)/4=6,5; r 1 4 =√(2 2 +4 2 +6 2 +12 2)/4≈ 3,54.

Видно, что при составлении операции из всё большего числа операций риск растёт весьма незначительно, оставаясь близко к нижней границе рисков составляющих операций, а эффективность каждый раз равна среднему арифметическому составляющих эффективностей.

Принцип диверсификации применяется не только для усреднения операций, проводимых одновременно, но в разных местах (усреднение в пространстве), но и проводимых последовательно во времени, например, при повторении одной операции во времени (усреднение во времени). Например, вполне разумной является стратегия покупки акций какой-нибудь стабильно работающей компании 20-го января каждого года. Неизбежные колебания курса акций этой компании благодаря этой процедуре усредняются и в этом проявляется эффект диверсификации.

Теоретически эффект диверсификации только положителен эффективность усредняется, а риск уменьшается. Однако усилия по проведению большого числа операций, по отслеживанию их результатов могут, конечно, свести на нет все плюсы от диверсификации.

ЗАКЛЮЧЕНИЕ

Данная курсовая работа рассматривает теоретические и практические вопросы и проблемы рисков.

В первой главе рассматриваются классическая схема оценки финансовых операций в условиях неопределенности.

Во второй главе сделан обзор характеристик вероятностных финансовых операций. Под финансовыми рисками понимаются кредитные, коммерческие, риски биржевых операций и риск неправомерного применения финансовых санкций государственными налоговыми инспекциями.

В третьей главе показаны общие методы уменьшения рисков. Приведены примеры качественного управления рисками.

Список литературы

1.Малыхин В.И. Финансовая математика: Учеб. пособие для вузов. М.: ЮНИТИ ДАНА, 1999. 247 с.

2. Страхование: принципы и практика/ Составитель Дэвид Бланд: пер. с англ.–М.: Финансы и статистика, 2000.–416с.

3. Гвозденко А.А. Финансово-экономические методы страхования: Учебник.–М.: Финансы и статистика, 2000.–184с.

4. Сербиновский Б.Ю., Гарькуша В.Н. Страховое дело: Учебное пособие для вузов. Серия “Учебники, учебные пособия” Ростов н/Д: “Феникс”, 2000–384 с.

Предположим, что ЛПР (лицо, принимающее решения) рассматривает несколько возможных решений: i = 1,…,m. Ситуация, в которой действует ЛПР, является неопределенной. Известно лишь, что наличествует какой-то из вариантов: j = 1,…, n. Если будет принято i -e решение, а ситуация есть j -я, то фирма, возглавляемая ЛПР, получит доход q ij . Матрица Q = (q ij) называется матрицей последствий (возможных решений). Какое же решение нужно принять ЛПР? В этой ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет i -e решение. Нам неизвестна реальная ситуация. Но если бы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход. Т.е. если ситуация есть j -я, то было бы принято решение, дающее доход q ij .
Значит, принимая i -e решение мы рискуем получить не q j , а только q ij , значит принятие i -го решения несет риск недобрать r ij = q j - q ij . Матрица R = (r ij) называется матрицей рисков.

Пример №1 . Пусть матрица последствий есть
Составим матрицу рисков. Имеем q 1 = max(q i 1) = 8, q 2 = 5, q 3 = 8, q 4 = 12.. Следовательно, матрица рисков есть

Принятие решений в условиях полной неопределенности

Не все случайное можно "измерить" вероятностью. Неопределенность – более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Кратко говоря, уникальные единичные случайные явления связаны с неопределенностью, массовые случайные явления обязательно допускают некоторые закономерности вероятностного характера.
Ситуация полной неопределенности характеризуется отсутствием какой бы то ни было дополнительной информации. Какие же существуют правила-рекомендации по принятию решений в этой ситуации?

Правило Вальда (правило крайнего пессимизма). Рассматривая i -e решение будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход a i Но теперь уж выберем решение i 0 с наибольшим a i0 . Итак, правило Вальда рекомендует принять решение i0 , такое что
Так, в вышеуказанном примере, имеем a 1 = 2, a 2 = 2, a 3 = 3, a 4 = 1. Из этих чисел максимальным является число 3. Значит, правило Вальда рекомендует принять 3-е решение.

Правило Сэвиджа (правило минимального риска). При применении этого правила анализируется матрица рисков R = (rij) . Рассматривая i -e решение будем полагать, что на самом деле складывается ситуация максимального риска b i = max
Но теперь уж выберем решение i 0 с наименьшим b i0 . Итак, правило Сэвиджа рекомендует принять решение i 0 , такое что
В рассматриваемом примере имеем b 1 = 8, b 2 = 6, b 3 = 5, b 4 = 7 . Минимальным из этих чисел является число 5. Т.е. правило Сэвиджа рекомендует принять 3-е решение.

Правило Гурвица (взвешивающее пессимистический и оптимистический подходы к ситуации). Принимается решение i , на котором достигается максимум
, где 0 ≤ λ ≤ 1 .
Значение λ выбирается из субъективных соображений. Если λ приближается к 1, то правило Гурвица приближается к правилу Вальда, при приближении λ к 0, правило Гурвица приближается к правилу "розового оптимизма" (догадайтесь сами, что это значит). В вышеуказанном примере при λ = 1/2 правило Гурвица рекомендует 2-е решение.

Принятие решений в условиях частичной неопределенности

Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j . Именно такое положение называется частичной неопределенностью. Как здесь принимать решение? Можно выбрать одно из следующих правил.
Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации i -го решения, является случайной величиной Qi с рядом распределения

qi1

qi2


qin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый доход, обозначаемый . Правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.
Предположим, что в схеме из предыдущего примера вероятности есть (1/2, 1/6, 1/6, 1/6). Тогда Q 1 =29/6, Q 2 =25/6, Q 3 =7, Q 4 =17/6. Максимальный средний ожидаемый доход равен 7, соответствует третьему решению.
Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации i -го решения, является случайной величиной R i с рядом распределения

ri1

ri2


rin

p1

p2


pn

Математическое ожидание M и есть средний ожидаемый риск, обозначаемый также R i . Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.
Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем R 1 =20/6, R 2 =4, R 3 =7/6, R 4 =32/5. Минимальный средний ожидаемый риск равен 7/6, соответствует третьему решению.
Анализ принимаемых решений по двум критериям: среднему ожидаемому доходу и среднему ожидаемому риску и нахождение решений, оптимальных по Парето, аналогично анализу доходности и риска финансовых операций. В примере множество решений, оптимальных по Парето операций, состоит только из одного 3-его решения.
В случае, если количество Парето-оптимальных решений больше одного, то для определения лучшего решения применяется взвешивающая формула f(Q)=2Q -R .

Правило Лапласа

Иногда в условиях полной неопределенности применяют правило Лапласа, согласно которому все вероятности p j считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

Пример №2 . Рассмотрим пример решения статистической игры в экономической задаче.
Сельскохозяйственное предприятие может реализовать некоторую продукцию:
А1) сразу после уборки;
А2) в зимние месяцы;
А3) в весенние месяцы.
Прибыль зависит от цены реализации в данный период времени, затратами на хранение и возможных потерь. Размер прибыли, рассчитанный для разных состояний-соотношений дохода и издержек (S1, S2 и S3), в течение всего периода реализации, представлен в виде матрицы (млн. руб.)

S1 S2 S3
A1 2 -3 7
A2 -1 5 4
A3 -7 13 -3
Определить наиболее выгодную стратегию по всем критериям (критерий Байеса, критерий Лапласа, максиминный критерий Вальда, критерий пессимизма-оптимизма Гурвица, критерий Ходжа-Лемана, критерий минимаксного риска Сэвиджа), если вероятности состояний спроса: 0,2; 0,5; 0,3; коэффициент пессимизма С = 0,4; коэффициент достоверности информации о состояниях спроса u = 0,6.
Решение
Результаты расчетов будем заносить в таблицу:
S1 S2 S3 Б НО ММ П-О Х-Л
А1 2 -3 7 1 2 -3 3 -0,6
А2 -1 5 4 3,5 2,7 -1 2,6 1,7
А3 -7 13 -3 4,2 1 -7 5 -0,28
p j 0,2 0,5 0,3 А3 А2 А2 А3 А2

1. Критерий Байеса (максимального математического ожидания)

Расчет осуществляется по формуле:
;
W 1 = 2∙0,2 + (-3) ∙0,5 + 7∙0,3 = 0,4 – 1,5 + 2,1 = 1
W 2 = -1∙0,2 + 5 ∙0,5 + 4∙0,3 = -0,2 + 2,5 + 1,2 = 3,5
W 3 = -7∙0,2 + 13 ∙0,5 + (-3)∙0,3 = -1,2 + 6,5 - 0,9 = 4,2
Найденные значения заносим в первый столбец (Б) и выбираем максимальное
W = max{1;3.5;4.2} = 4.2,

значит оптимальной по данному критерию является стратегия А3 – продавать в весенние месяцы.

2. Критерий недостаточного основания Лапласа (НО)

Находим среднее значение элементов каждой строки:
.
;
;
.
Найденные значения заносим во второй столбец (НО) и выбираем максимальное W = max{2; 2.7; 1} = 2.7, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

3. Максиминный критерий Вальда (ММ)

В каждой строке находим минимальный элемент: .
W 1 = min{2; -3; 7} = -3
W 2 = min{-1; 5; 4} = -1
W 3 = min{-7; 13; -3} = -7
Найденные значения заносим в третий столбец (ММ) и выбираем максимальное W= max{-3; -1; 7} = -1, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

4. Критерий пессимизма-оптимизма Гурвица (П-О)

Для каждой строки рассчитываем значение критерия по формуле: . По условию C = 0.4, значит:
W 1 = 0,4∙min{2; -3; 7} + (1-0,4) ∙ max{2; -3; 7} = 0,4∙(-3) + 0,6∙7 = -1,2 + 4,2 = 3
W 2 = 0,4∙min{-1; 5; 4} + (1-0,4) ∙ max{-1; 5; 4} = 0,4∙(-1) + 0,6∙5 = -0,4 + 3 = 2,6
W 3 = 0,4∙min{-7; 13; -3} + (1-0,4) ∙ max{-7; 13; -3} = 0,4∙(-7) + 0,6∙13 = -2,8 + 7,2 = 5
Найденные значения заносим в четвертый столбец (П-О) и выбираем максимальное W = max{3; 2.6 5} = 5, значит оптимальной по данному критерию является стратегия А3 – продавать в весенние месяцы.

5. Критерий Ходжа-Лемана (Х-Л)

Для каждой строки рассчитываем значение критерия по формуле: . По условию u = 0.6 и множители в каждом слагаемом уже рассчитаны, их можно взять их первого столбика (Б) и из третьего столбика (ММ), значит:
W 1 = 0,6∙1 + (1-0,6) ∙(-3) = 0,6 – 1,2 = -0,6
W 2 = 0,6∙3,5 + (1-0,6) ∙(-1) = 2,1 – 0,4 = 1,7
W 3 = 0,6∙4,2 + (1-0,6) ∙(-7) = 2,52 – 2,8 = -0,28
Найденные значения заносим в пятый столбец (Х-Л) и выбираем максимальное W = max{-0.6; 1.7; -0.28} = 1.7, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

5. Критерий минимаксного риска Сэвиджа

Рассчитаем матрицу рисков. Заполнять ее лучше по столбцам. В каждом столбце находим максимальный элемент и вы читаем из него все остальные элементы столбца, результаты записываем на соответствующих местах.
Вот как рассчитывается первый столбец. Максимальный элемент в первом столбце: a 11 = 2, значит по формуле :
r 11 = 2 – a 11 = 2 -2 = 0
r 21 = 2 – a 21 = 2 –(-1) = 3
r 31 = 2 – a 31 = 2 –(-7) = 9
Рассчитаем второй столбец матрицы рисков. Максимальный элемент во втором столбце: a 32 = 13, значит:
r 12 = 13 – a 12 = 13 –(-3) = 16
r 22 = 13 – a 22 = 13 –5 = 8
r 32 = 13 – a 32 = 13 –13 = 0
Рассчитаем третий столбец матрицы рисков. Максимальный элемент в третьем столбце: a 13 = 7, значит:
r 13 = 7 – a 13 = 7 –7 = 0
r 23 = 7 – a 23 = 7 –4 = 3
r 33 = 7 – a 33 = 7 –(-3) = 10
Таким образом, матрица рисков имеет вид (в каждом столбце на месте максимального элемента платежной матрицы должен стоять ноль):
W i
0 16 0 16
3 8 3 8
9 0 10 10
Дополним матрицу рисков рассчитанными значениями критерия W i – в каждой строке выбираем максимальный элемент ():
W 1 = max{0; 16; 0} = 16
W 2 = max{3; 8; 3} = 8
W 3 = max{9; 0; 10} = 10
Найденные значения заносим в столбец (W i) и выбираем минимальное W = min{16,8,10} = 8, значит оптимальной по данному критерию является стратегия А2 – продавать в зимние месяцы.

Вывод:

  1. Стратегия А1 (продавать сразу после уборки) не является оптимальной ни по одному из критериев.
  2. Стратегия А2 (продавать в зимние месяцы) является оптимальной согласно критериям недостаточного основания Лапласа, максиминного критерия Вальда и минимаксного критерия Сэвиджа.
  3. Стратегия А3 (продавать в весенние месяцы) является оптимальной согласно критериям Байеса, пессимизма-оптимизма Гурвица, Ходжа-Лемана.

Пример №2 . В обычной стратегической игре каждый игрок предпринимает именно те действия, которые наиболее выгодны ему и менее выгодны противнику. При этом предполагается, что игроки – разумные и антагонистические противники. Однако очень часто присутствует неопределенность, которая не связана с сознательным противодействием противника, а зависит от некоторой объективной действительности.
Сельскохозяйственное предприятие имеет три участка земли: влажный, средней влажности и сухой. Один из этих участков предполагается использовать для выращивания картофеля, остальные – для посева зеленой массы. Для получения хорошего урожая картофеля требуется определенное количество влаги в почве в период вегетации. При излишней влажности посаженый картофель на некоторых участках может гнить, а при недостаточном количестве осадков будет плохо развиваться, что приводит к снижению урожайности. Определить, на каком участке сеять картофель, чтобы получить хороший урожай его, если известна средняя урожайность картофеля на каждом участке в зависимости от погодных условий. На участке A 1 урожайность составляет 200, 100 и 250 ц с 1 га при выпадении соответственно нормального количества осадков, больше и меньше нормы. Аналогично на участке A 2 – 230, 120 и 200 ц, а на участке A 3 – 240, 260 и 100 ц.
Используем игровой подход. С/х предприятие – игрок A , у которого три стратегии: A 1 – сеять картофель на влажном участке, A 2 – на участке средней влажности, A 3 – на сухом участке. Игрок П – природа, у которого три стратегии: П 1 соответствует количеству осадков меньше нормы, П 2 – норме, П 3 – больше нормы. Выигрыш с/х предприятия при каждой паре стратегий (A i , П j ) задается урожайностью картофеля с 1 га.

П
A
П 1 П 2 П 3
A 1 250 200 100
A 2 200 230 120
A 3 100 240 260
Рассмотрим общую ситуацию, когда какой-то стороне необходимо выполнить операцию в недостаточно известной обстановке. О состоянии этой обстановки можно сделать n предположений: П 1 , П 2 ,…, П n . Например, покупательский спрос. По аналогии с примером 8 эти состояния рассматривают как стратегии природы. В теории статистических игр природа не является разумным игроком, она рассматривается как некая незаинтересованная инстанция, которая не выбирает для себя оптимальных стратегий. Ее возможные состояния реализуются случайным образом. Такие ситуации принято называть играми с природой. Оперирующая сторона A в своем распоряжении имеет m возможных стратегий: A 1 , A 2 ,…, A m . Выигрыши игрока A при каждой паре стратегий A i и П j предполагаются известными a ij .
Может показаться, что игра с природой проще стратегической игры, поскольку природа не противодействует игроку A . На самом деле это не так, поскольку в неопределенной ситуации труднее принять обоснованное решение. Хотя выиграет A , скорее всего, больше, чем в игре против сознательного противника.

Пример 9. Фирма производит пользующиеся спросом детские платья и костюмы, реализация которых зависит от состояния погоды. Затраты фирмы в течение августа-сентября на единицу продукции составили: платья – 7 ден. ед., костюмы – 28 ден. ед. Цена реализации составляет 15 и 50 ден. ед. соответственно. По данным наблюдений за несколько предыдущих лет, фирма может реализовать в условиях теплой погоды 1 950 платьев и 610 костюмов, а при прохладной погоде – 630 платьев и 1 050 костюмов.
Составить платежную матрицу.
Решение. У фирмы две стратегии: A 1 : выпустить продукцию, считая, что погода будет теплой; A 2 : выпустить продукцию, считая, что погода будет прохладной.
У природы две стратегии: B 1 : погода теплая; B 2 : погода прохладная.
Найдем элементы платежной матрицы:
1) a 11 – доход фирмы при выборе стратегии A 1 при условии B 1 :
a 11 =(15-7)·1950+(50-28)·610=29020.
2) a 12 – доход фирмы при выборе A 1 при условии B 2 . Фирма выпустит 1 950 платьев, а продаст 630, доход от реализации платьев
(15-7)·630-7·(1950-630)=5040-9240
a 12 =5040-9240+22·610=9220.
3) аналогично при стратегии A 2 в условиях B 1 фирма выпустит 1 050 костюмов, а продаст 610;
a 21 =8·630+22·610-28·(1050-610)=6140
4) a 22 =8·630+22·1050=28140
Платежная матрица:

20 020 9 220
6 140 28 140

Пример 2 . Объединение производит разведку полезных ископаемых на трех месторождениях. Фонд средств объединения составляет 30 ден. ед. Деньги в первое месторождение M 1 могут быть вложены в количестве, кратном 9 ден. ед., во второе M 2 – 6 ден. ед., в третье M 3 – 15 ден. ед. Цены на полезные ископаемые в конце планового периода могут оказаться в двух состояниях: C 1 и C 2 . Эксперты установили, что в ситуации C 1 прибыль от месторождения M 1 составит 20 % от количества вложенных ден. ед. на разработку, на M 2 – 12 % и на M 3 – 15 %. В ситуации C 1 на конец планового периода прибыль составит 17 %, 15 %, 23 % на месторождениях M 1 , M 3 , M 3 соответственно.
Игрок A – объединение. Игрок П (природа) – совокупность внешних обстоятельств, которые обуславливают ту или иную прибыль на месторождениях. У игрока A имеется четыре возможности, полностью использующие имеющиеся средства. Первая стратегия, A 1 , состоит в том, что A вложит в M 1 9 ден. ед., в M 2 – 6 ден. ед., в M 3 – 15 ден. ед. Вторая стратегия A 2: в M 1 – 18 ден. ед., в M 2 – 12 ден. ед., в M 3 деньги не вкладывать. Третья стратегия, A 3: 30 ден. ед. вложить в M 3 . Четвертая стратегия, A 4:. 30 ден. ед. вложить в M 2 . Кратко можно записать A 1 (9, 6, 15), A 2 (18, 12, 0), A 3 (0, 0, 30), A 4 (0, 30, 0).
Природа может реализовать одно из двух своих состояний, характеризующихся различными ценами на полезные ископаемые в конце планового периода. Обозначим состояния природы П 1 (20 %, 12 %, 15 %), П 2 (17 %, 15 %, 23 %).
Элементы a ij платежной матрицы имеют смысл суммарной прибыли, получаемой объединением в различных ситуациях (A i , П j ) (i =1, 2, 3, 4, j = 1, 2). Например, вычислим a 12 , отвечающий ситуации (A 1 , П 2 ), т. е. случаю, когда объединение вкладывает в месторождения M 1 , M 2 , M 3 , соответственно 9 ден. ед., 6 ден. ед., 15 ден. ед., и на конец планового периода цены оказались в состоянии C 2 :
a 12 = 9·0,17+6·0,15+15·0,23 = 5,88 ден. ед.

Пример 3 . Ожидается наступление наводнения, которое может иметь категорию с первой по пятую. Величина ущерба от наводнения:

Категория наводнения 1 2 3 4 5
Ущерб, ден. ед. 5 10 13 16 20
В качестве профилактического действия можно построить дамбу; имеется пять вариантов выбора высоты дамбы: h 1 < h 2 < h 3 < h 4 < h 5 , причем дамба высоты h 1 защищает только от наводнения первой категории, высоты h 2 – от наводнения первой и второй категории, и т. д., дамба высоты h 5 защищает от наводнения любой категории.
Затраты на строительство дамбы:
Высота дамбы h 1 h 2 h 3 h 4 h 5
Затраты, ден. ед. 2 4 6 8 10
Принимающий решение имеет шесть стратегий (не строить дамбу вообще (A 0 ) или строить дамбу высоты h i (A i ), i = 1, 2, 3, 4, 5). Природа также имеет шесть стратегий (не осуществлять наводнение (П 0 ) или осуществить наводнение j -й категории (П j ), 1≤j≤5).
Получаем матрицу потерь:
П / A П 0 П 1 П 2 П 3 П 4 П 5
A 0 0 5 10 13 16 20
A 1 2 2 12 15 18 22
A 2 4 4 4 17 20 24
A 3 6 6 6 6 22 26
A 4 8 8 8 8 8 28
A 5 10 10 10 10 10 10
Например, если построить дамбу высоты h 2 , а наводнение будет третьей категории, то затраты на строительство составят 4 ден. ед., а ущерб от наводнения 13 ден. ед. Таким образом, общие потери составят 4 + 13 = 17 ден. ед. Если же наводнение будет второй категории, то ущерба от наводнения не будет, и потери связаны только со строительством дамбы, т.е. 4 ден. ед
Чтобы из матрицы потерь (b ij ) получить матрицу выигрышей, достаточно у всех элементов поменять знак и прибавить любую константу C (в данном случае C можно интерпретировать как сумму, выделенную на строительство дамбы, тогда выигрыш a ij =C-b ij представляет собой сэкономленную сумму). Например, при C =30 матрица выигрышей:
П / A П 0 П 1 П 2 П 3 П 4 П 5
A 0 30 25 20 17 14 10
A 1 28 28 18 15 12 8
A 2 26 26 26 13 10 6
A 3 24 24 24 24 8 4
A 4 22 22 22 22 22 2
A 5 20 20 20 20 20 20

Игры с "природой"

Термин "природа" в теории игр понимается в широком смысле . Это могут быть действительные природные физические (климатические), биологические, химические, социальные и т.п. процессы, которые сопровождают экономическую деятельность. Под "природой" может также пониматься рынок, противостоящий предпринимателю, конкурирующая среда, монополия и т.п. "Природа" может выступать как антагонистическая сторона, а может как кооперативная среда. "Природа" в виде природных процессов, как часть экономики, не стремиться "специально" навредить предпринимателю, но она несёт определённый урон от его экономической деятельности и этот "проигрыш"для неё должен быть минимален , если, вообще, без него для окружающей среды нельзя обойтись. Игрок A в таких играх - это экономические субъекты, а игрок B - это "природа". Откуда средства у физической "природы"? Проигрыш игрока B, физической "природы", должен компенсироваться из вне, например, государственными дотациями либо заложенными в инвестиционные проекты средствами на возобновление природных ресурсов. Знание оптимальных стратегий "природы" позволяет определить наиболее неблагоприятные условия для игрока A (предпринимателя), которые его ожидают ("надейся на лучшее, но готовься к худшему"), и оценить необходимые ресурсы на восстановление природных ресурсов, дающих ему возможность получить гарантированный доход.
Если "природа" подразумевает конкурентную среду - то проигрыш второго игрока есть цена борьбы с конкурентами на рынке.
Перейдём к примерам содержательных постановок задач игры с "природой".
1. Антагонистические игры
Пример 1. (Планирование посевов) . Фермер, имеющий ограниченный участок земельных угодий, может его засадить тремя различными культурами A 1, A 2, A 3 . Урожай этих культур зависит главным образом от погоды ("природы"), которая может находиться в трёх различных состояниях: B 1 , B 2 , B 3 . Фермер имеет информацию (статистические данные) о средней урожайности этих культур (количество центнеров культуры, получаемого в одного гектара земли) при трёх различных состояниях погоды, которая отражена в таблице: Тогда матрица доходов (платёжная матрица) фермера A имеет вид:

Элемент матрицы A - (a ij) показывает, какой доход может получить фермер с одного гектара земли, если он посеет культуру i ( i =1, 2, 3), а погода будет находиться в состоянии j (j = 1, 2, 3).
Необходимо определить пропорции, в которых фермер должен засеять имеющийся участок земли, чтобы получить максимальный гарантированный доход вне зависимости от того, какие погодные условия будут реализованы.
Данная задача может быть сведена к антагонистической игре. В данном случае в качестве первого игрока выступает фермер, а в качестве второго игрока - природа. Будем предполагать, что природа, как игрок, может вести себя таким образом, чтобы максимально навредить фермеру, преследуя тем самым противоположные интересы (эти предположения позволяют оценить тот доход, который он может получить в том случае, если погодные условия будут для него максимально неблагоприятные). В этом случае фермер имеет в своём распоряжении три чистые стратегии:
  • первая чистая стратегия предполагает, что весь участок земли буде засеян культурой A 1 ;
  • вторая чистая стратегия предполагает, что весь участок земли будет засеян культурой A 2 ;
  • третья чистая стратегия предполагает, что весь участок будет засеян культурой A 3 .
Как игрок, природа может также использовать три возможные стратегии:
  • засушливую погоду, которая соответствует первой чистой стратегии B 1 ;
  • нормальную погоду, которая соответствует второй чистой стратегии B 2 ;
  • дождливую погоду, которая соответствует третьей чистой стратегии B 3 .
Решение



2. Проверим, имеет ли данная игра седловую точку.

V * =max i min j a ij = 50.
V * =min j max i a ij = 100.

3. Решение игры следует искать в смешанных стратегиях. Сведём игровую задачу к задаче линейного программирования. Если первый игрок - фермер - применяет свою оптимальную смешанную стратегию P * , а второй игрок - природа - применяет последовательно свои чистые стратегии, то математическое ожидание дохода, который фермер может получить со своего участка, будет не меньше цены игры V.


.


Разделим равенство:
p* 1 + p* 2 + p* 3 = 1
на V, получим, что новые переменные y 1 , y 2 , y 3 удовлетворяют условию:
y 1 + y 2 + y 3 = 1/V
Поскольку цель первого игрока - максимизация его выигрыша , а математическое ожидание его выигрыша не меньше цены игры , то первый игрок будет стремиться максимизировать цену игры, которая эквивалентна минимизации величины 1/V.
Итак, для первого игрока (фермера) задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
найти минимум функции F = y 1 + y 2 + y 3


и прямых ограничениях:
y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0
Переходим ко второму игроку, к природе. Если второй игрок - природа - будет применять свою оптимальную смешанную стратегию Q * ,а первый игрок - фермер будет последовательно применять свои чистые стратегии, то математическое ожидание проигрыша второго игрока будет не больше цены игры. Следовательно, должна выполняться следующая система неравенств:

Разделим каждое из неравенств, входящих в систему на V и введём новые переменные:
.
В результате получим новую систему неравенств:

Разделим равенство:
q* 1 + q* 2 + q* 3 = 1
на V, получим, что новые переменные q 1 , q 2 , q 3 удовлетворяют условию:
q 1 + q 2 + q 3 = 1/V
Поскольку цель второго игрока - природы - минимизация его проигрыша , а математическое ожидание его проигрыша не больше цены игры , то второй игрок будет стремиться минимизировать цену игры, которая эквивалентна максимизации величины 1/V.
Итак, для второго игрока (природы) задача об определении оптимальной стратегии поведения свелась к задаче линейного программирования:
найти максимум функции F / = x 1 + x 2 + x 3
при следующих функциональных ограничениях:

и прямых ограничениях:
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0
Таким образом, для того чтобы найти оптимальную смешенную стратегию второго игрока, необходимо также решить задачу линейного программирования.
Задачи обоих игроков свелись к паре двойственных задач линейного программирования:
Задача второго игрока минимизация проигрыша V Задача первого игрока максимизация выигрыша V
Целевая функция
F / = x 1 +x 2 +x 3 = → max F = y 1 +y 2 +y 3 = → min
Функциональные ограничения


Прямые ограничения

x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0

y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0

Задача первого игрока решается симплекс-методом . Результаты счёта:
Выводы . В соответствии с полученными результатами фермеру гарантирован средний доход в размере 66,67 единиц с каждого гектара используемой под культурами земли при самых неблагоприятных условиях. Оптимальная стратегия для него - выращивание двух культур, A 1 и A 3 , причём, под первую культуру ему следует отвести 0,67 часть всей земли , а под третью культуру 0,33 часть всей земли .
Природа "грозит" фермеру жарой 0,33 часть сезона возделывания культур и 0,67 часть сезона дождями.

Пример . Планирование выпуска продукции при разных состояниях природы - рынка спроса.
Предприятие может выпускать 4 вида продукции: A 1 , A 2 , A 3 , A 4 , получая при этом прибыль. Её величина определяется состоянием спроса (природой рынка), который может находиться в одном из четырёх возможных состояний: B 1 , B 2 , B 3 , B 4 . Зависимость величины прибыли от вида продукции и состояния рынка представлено в таблице:

Виды продукции Возможные состояния рынка спроса
B 1 B 2 B 3 B 4
A 1 4 3 5 6
A 2 2 6 1 5
A 3 3 0 7 2
A 4 3 5 1 3

Платёжная матрица имеет вид:

Элемент матрицы A - {a ij } характеризует, какую прибыль может получить предприятие, если оно будет выпускать i - й вид продукции(i =1, 2, 3, 4) при j-м спросе(j = 1, 2, 3, 4).
Необходимо определить оптимальные пропорции выпускаемых предприятием видов продукции, продажа которой обеспечила бы ему максимально возможную выручку вне зависимости от того, какое состояние спроса будет реализовано
Эта задача может быть сведена к антагонистической игре.
В данном случае в качестве первого игрока выступает предприятие , а в качестве второго игрока - природа , которая влияет на состояние спроса и может сделать его максимально неблагоприятным для предприятия. Будем предполагать, что природа, как игрок, будет вести себя таким образом, чтобы максимально навредить предприятию, преследуя тем самым противоположные интересы.
В этом случае конфликт двух сторон может характеризоваться, как антагонистический, а использование модели этого конфликта позволяет предприятию. оценить выручку, которую оно может получить вне зависимости от того, какое состояние спроса будет реализовано.
Выступая в качестве первого игрока , предприятие может использовать четыре стратегии:
· первую чистую стратегию, соответствующую выпуску предприятием только продукции A 1
· вторую чистую стратегию, соответствующую выпуску предприятием только продукции A 2
· третью чистую стратегию, соответствующую выпуску предприятием только продукции A 3
· четвёртую чистую стратегию, соответствующую выпуску предприятием только продукции A 4
Выступая в качестве второго игрока , природа может использовать также четыре стратегии:
· первую чистую стратегию, при которой реализуется состояние спроса B 1 ;
· вторую чистую стратегию, при которой реализуется состояние спроса B 2 ;
· третью чистую стратегию, при которой реализуется состояние спроса B 3 ;
· четвёртую чистую стратегию, при которой реализуется состояние спроса B 4 .
Решение
1. Проанализируем платёжную матрицу A.

Матрица A не имеет доминируемых стратегий и не может быть упрощена.
2. Проверим, имеет ли данная игра седловую точку .
Найдём нижнюю и верхнюю цену игры:
V * =max i min j a ij = 3.
V * =min j max i a ij = 4.
Поскольку V * ≠V * , то данная антагонистическая игра не имеет седловой точки и решения в чистых стратегиях.
Решение игры следует искать в смешанных стратегиях. Сведём рассматриваемый антагонистический конфликт к прямой и двойственной задаче линейного программирования.
Если первый игрок - предприятие - применяет свою оптимальную смешанную стратегию P * , а второй игрок - природа - применяет последовательно свои чистые стратегии , то математическое ожидание дохода , который предприятие может получить, будет не меньше цены игры V .
И наоборот, если второй игрок - природа - будет применять свою оптимальную смешанную стратегию Q * , а первый игрок - предприятие будет последовательно применять свои чистые стратегии , то математическое ожидание проигрыша второго игрока будет не больше цены игры . Следовательно, должна выполняться следующая система неравенств:
Задача второго игрока минимизация проигрыша V Задача первого игрока максимизация выигрыша V
Целевая функция
F / = x 1 +x 2 +x 3 +x 4 =→ max F = y 1 +y 2 +y 3 +y 4 =→ min
Функциональные ограничения


Прямые ограничения

x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0

y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0, y 4 ≥ 0
Применяя симплекс-метод для решения задачи первого игрока , получим:
Y * = (y 1 * = 0,182; y 2 * = 0; y 3 * = 0; y 4 * =0,091)
F= y 1 * + y 2 * + y 3 * +y 4 * = 0,273
Из соотношения y 1 * + y 2 * + y 3 * +y 4 * =1/V найдём V:

Из соотношений:

Найдём:
p* 1 = y* 1 V = 0,67 , p* 2 = y* 2 V = 0 , p* 3 = y* 3 V = 0 , p* 4 = y* 4 V =0,33

Окончательно имеем:
Р * = (р * 1 =0,67; р * 2 = 0; р * 3 =0; р * 4 = 0,33), V = 3.67
На основании решения, найденного для двойственной задачи линейного программирования, найдём решение исходной задачи - задачи второго игрока:
X * = (x 1 * = 0,121; x 2 * =0,121; x 3 * = 0,03; x 4 * = 0)
F / = x 1 * + x 2 * + x 3 * +x 4 * = 0,273
Из соотношения x 1 * + x 2 * + x 3 * +x 4 * = 1/V найдём V:

Из соотношений:

Найдём:
q* 1 = x* 1 V = 0,445 , q* 2 = x* 2 V = 0,444 , q* 3 = x* 3 V = 0,111 , q* 4 = x* 4 V = 0.
Окончательно имеем:
Q * = (q * 1 = 0,445; q * 2 =0,444; q * 3 = 0,111; q * 4 = 0), V = 3.67

Пример . Фирма планирует реализацию своей продукции на рынках, учитывая возможные варианты покупательского спроса П j , j=1,4 (низкий, средний, высокий, очень высокий). На предприятии разработано три стратегии сбыта товаров A 1 , А 2 , А 3 . Объем товарооборота (ден.ед.), зависящий от стратегии и покупательского спроса, представлен в таблице.

А j П j
П 1 П 2 П 3 П 4
А 1 30 +N 10 20 25 + N/2
А 2 50 70 - N 10 + N/2 25
А 3 25 – N/2 35 40 60 - N/2
где N=3

Решение находим с помощью калькулятора .
Критерий Байеса .
По критерию Байеса за оптимальные принимается та стратегия (чистая) A i , при которой максимизируется средний выигрыш a или минимизируется средний риск r.
Считаем значения ∑(a ij p j)
∑(a 1,j p j) = 33 0.3 + 10 0.2 + 20 0.4 + 26.5 0.1 = 22.55
∑(a 2,j p j) = 50 0.3 + 67 0.2 + 11.5 0.4 + 25 0.1 = 35.5
∑(a 3,j p j) = 23.5 0.3 + 35 0.2 + 40 0.4 + 58.5 0.1 = 35.9

A i П 1 П 2 П 3 П 4 ∑(a ij p j)
A 1 9.9 2 8 2.65 22.55
A 2 15 13.4 4.6 2.5 35.5
A 3 7.05 7 16 5.85 35.9
p j 0.3 0.2 0.4 0.1

Критерий Лапласа .
Если вероятности состояний природы правдоподобны, для их оценки используют принцип недостаточного основания Лапласа, согласно которого все состояния природы полагаются равновероятными, т.е.:
q 1 = q 2 = ... = q n = 1/n.
q i = 1/4
A i П 1 П 2 П 3 П 4 ∑(a ij)
A 1 8.25 2.5 5 6.63 22.38
A 2 12.5 16.75 2.88 6.25 38.38
A 3 5.88 8.75 10 14.63 39.25
p j 0.25 0.25 0.25 0.25
Вывод: выбираем стратегию N=3.
Критерий Вальда .
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min a ij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
A i П 1 П 2 П 3 П 4 min(a ij)
A 1 33 10 20 26.5 10
A 2 50 67 11.5 25 11.5
A 3 23.5 35 40 58.5 23.5
Вывод: выбираем стратегию N=3.
Критерий Севиджа .
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max r ij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце b j = max(a ij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r 11 = 50 - 33 = 17; r 21 = 50 - 50 = 0; r 31 = 50 - 23.5 = 26.5;
2. Рассчитываем 2-й столбец матрицы рисков.
r 12 = 67 - 10 = 57; r 22 = 67 - 67 = 0; r 32 = 67 - 35 = 32;
3. Рассчитываем 3-й столбец матрицы рисков.
r 13 = 40 - 20 = 20; r 23 = 40 - 11.5 = 28.5; r 33 = 40 - 40 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r 14 = 58.5 - 26.5 = 32; r 24 = 58.5 - 25 = 33.5; r 34 = 58.5 - 58.5 = 0;
A i П 1 П 2 П 3 П 4
A 1 17 57 20 32
A 2 0 0 28.5 33.5
A 3 26.5 32 0 0

A i П 1 П 2 П 3 П 4 max(a ij)
A 1 17 57 20 32 57
A 2 0 0 28.5 33.5 33.5
A 3 26.5 32 0 0 32
Вывод: выбираем стратегию N=3.
Критерий Гурвица .
Критерий Гурвица является критерием пессимизма - оптимизма. За (оптимальную принимается та стратегия, для которой выполняется соотношение:
max(s i)
где s i = y min(a ij) + (1-y)max(a ij)
При y = 1 получим критерий Вальде, при y = 0 получим – оптимистический критерий (максимакс).
Критерий Гурвица учитывает возможность как наихудшего, так и наилучшего для человека поведения природы. Как выбирается y? Чем хуже последствия ошибочных решений, тем больше желание застраховаться от ошибок, тем y ближе к 1.
Рассчитываем s i .
s 1 = 0.5 10+(1-0.5) 33 = 21.5
s 2 = 0.5 11.5+(1-0.5) 67 = 39.25
s 3 = 0.5 23.5+(1-0.5) 58.5 = 41
A i П 1 П 2 П 3 П 4 min(a ij) max(a ij) y min(a ij) + (1-y)max(a ij)
A 1 33 10 20 26.5 10 33 21.5
A 2 50 67 11.5 25 11.5 67 39.25
A 3 23.5 35 40 58.5 23.5 58.5 41
Вывод: выбираем стратегию N=3.
Таким образом, в результате решения статистической игры по различным критериям чаще других рекомендовалась стратегия A 3 .

Руководство компании принимает решение о размещении производства нового продукта в некотором месте. Чтобы сформировать представление о ситуации на рынке нового продукта на момент освоения производства, ему необходимо учесть затраты на доставку готовой продукции до потребителя, развитость транспортной и социальной инфраструктуры региона, конкуренцию на рынке, соотношение спроса и предложения, курсы валют и многое другое. Возможные варианты решений, инвестиционная привлекательность которых определяется как процент прироста дохода по отношению к сумме капитальных вложений, представлены в таблице.
Выбрать:
1) место для размещения производства, если руководитель предприятия уверен в том, что на рынке сложится ситуация 4;
2) место для размещения производства, если руководство оценивает вероятность ситуации 1 в 0,2; ситуации 2 в 0,1; ситуации 3 в 0,25;
3) провести выбор варианта в условиях неопределенности по критерию: максимакс, максимин, критерий Лапласа, критерий Сэведжа, критерий Гурвица (y = 0,3);
4) изменится ли наилучший вариант решения по критерию Гурвица если величину a увеличить до 0,5?
5) предположив, что данные таблицы представляют затраты предприятия, определить выбор, который сделает предприятие при использовании каждого из следующих критериев: максимин; максимакс; критерий Гурвица(? = 0,3); критерий Сэведжа; критерий Лапласа

Типовые задания

  1. Выбрать оптимальный проект для строительства используя критерии Лапласа, Вальда, максимального оптимизма, Сэвиджа и Гурвица при a=0.58. Матрица затрат имеет вид:
    0.07 0.26 0.11 0.25 0.1 0.21
    68 45 54 79 47 99
    56 89 42 56 74 81
    72 87 56 40 62 42
    65 48 75 89 52 80
    69 93 93 56 45 43
    73 94 79 68 67 46
    66 100 64 89 94 49
    70 42 97 42 42 50
  2. Розничное торговое, предприятие разработало несколько вариантов плана продажи товаров на предстоящей ярмарке с учетом меняющейся конъюнктуры рынка и спроса покупателей, получающиеся от их возможных сочетаний величины прибыли представлены в виде матрицы выигрышей. Определить оптимальный план продажи товаров.
    x=0,7
  3. Фирма планирует реализацию своей продукции на рынках, учитывая возможные варианты покупательского спроса Пj, j=1͞,4͞ (низкий, средний, высокий, очень высокий). На предприятии разработано три стратегии сбыта товаров A 1 , А 2 , А 3 . Объем товарооборота (ден.ед.), зависящий от стратегии и покупательского спроса, представлен в таблице.
    А j П j
    П 1 П 2 П 3 П 4
    А 1 30 +N 10 20 25 + N/2
    А 2 50 70 - N 10 + N/2 25
    А 3 25 – N/2 35 40 60 - N

    Где N=3
    Известны возможные состояния покупательского спроса, которые соответственно q 1 =0,3, q 2 =0,2, q 3 =0,4, q 4 =0,1. Необходимо найти стратегию сбыта, максимизирующую средний товарооборот фирмы. При этом использовать критерии Вальда, Гурвица, Сэвиджа, Байеса.
    Решение
  4. Затраты фабрики в течение апреля - мая на единицу продукции составили: платья - 8 денежных единиц, костюмы - 27, а цена реализации равняется соответственно 16 и 48. По данным наблюдений за прошлое время, фабрика может реализовать в течение этих месяцев в условиях теплой погоды 600 костюмов и 1975 платьев, а при прохладной погоде - 625 платьев и 1000 костюмов.